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PREFACE.

THE present work is intended as a sequel to our Blementary
Algebra, for Schools. The first few chaptexs are devoted to
a fuller discussion of Ratio, Proportion, Variation, and the
Progressions, which in the former work were treated in an
"elementary manner; and we have here introduced theorems
and examples which are unsuitable for a first course of
reading.

From this point the work covers ground for the most
part new to the student, and enters upon subjects of special
importance : these we have endeavoured to treat minutely
and thoroughly, discussing both bookwork and examples
with that fulness which we have always found necessary in
our experience as teachers.

It has been our aim to discuss all the essential parts
as completely as possible within the limits of a single
volume, but in a few of the later chapters it has been im-
possible to find room for more than an introductory sketch ;
in all such cases our object has been to map ouf a suitable
first course of reading, referring the student to special treatises
for fuller information. h

In the chapter on Permutations and Combinations we
are much indebted to the Rev. W, A, Whitworth for per-
mission to make use of some of the proofs given in his
Choice und Chance. For many years we have used these
proofs in our own teaching, and we are convinced that this
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part of Algebra is made far more intelligihle to tlie beginner
by a system of common sense reasoning from first principles
than by the proofs usually found in algebraical text-books.

The discussion of Convergency and Divergency of Series
always presents great difficulty to the student on his first
reading. The icherent difficultics of the subject are no
doubt considerable, and these are increased by the place it
has ordinarily cccupied, and by the somewhat inadequate
treatment it has hitherto received. Accordingly we have
placed this section somewhat later than is usual; much
thought has been bestowed on its general arrangement, and
on the selection of suitable examples to illustrate the text;
and we have endeavoured to make it more interesting and
intelligible by previously imtroducing a short chapter on
Limiting Values and Vanishing Fractions.

In the chapter on Summation of Series we have laid
much stress on the “ Method of Differences” and its wide and
inaportant applications. < The basis of this method is a well-
known formula in the Calcalus of Finite Differences, which in
the absence of a purely algebraical proof can hardly be con-
sidered admissible in & treatise on Algebra. The proof of the
Finite Difference formula which we have given in Arts. 395,
396, we believe to be new and original, and the development,
of the Difference Method frorn this formula has enabled us to
introduce many interesting types of series which have hitherto
been relegated to a much later stage in the student’s reading.

We have received able and material assistance in the
chapter on Probability from the Rev. T. C. Simmons of
Christ’s College, Brecon, and our warmest thacks are due
to him, both for his aid in eriticising and improving the
text, and for placing at our disposal several interesting and
original problems.

It is hardly possible to read any medern treatise on
Analytical Conics or Solid Geometry without some know-
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ledge of Determinants and their applications. We have
therefore given a brief clementary discussion of Detenmi-
nants in Chapter XXXUL, in the hope that it may provide
the student with a useful introductory course, and prepare
him for a more complete study of the subject.

The last chapter contains all the most useful propositions
in the Theory of Equations suitable for a first reading. The
Theory of Equations follows so naturally on the study of
Algebra that no apology is needed for here introducing pro-
positions which usually find place in a separate treatise. In
fact, a considerable part of Chapter XXxv. may be read
with advantage at a much earlier stage, and niay conventently
be studied before some of the harder sections of previous
chapters. :

It will be found that each chapter is as nearly as possible
complete in ifself, so that the order of their succession can
be varied at the discretion of the teacher; but 1t is recom-
mended that all sections marked with an asterisk should be
reserved for a second reading.

In enumerating the sources from which we have derived
agsistance in the preparation of this work, there is one boeok
to which it is difficult to say how far we are indebted.
Todhunter's 4lgebre for Schools and Colleges has been the
recognised English text-book for so long that it is hardly
possible that any one writing a fewi-book on Algebra at the
present day should not be largely influenced by it. At the
same time, though for many years Todhunter's Algelra has
been in constant use among our pupils, we have rarely
adopted the order and arrangement there laid down; in
many chapters we have found it expedient to make frequent
use of alternative proofs; and we have always largely sup-
plemented the text by manuseript notes. These nates,
which now appear scattered throughout the present work,
have been collected at different times during the last twenty

IL H. A, b
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years, so that it is impossible to make definite acknowledge-
ment in every case where assistauce has been obtained from
other writers, But speaking generally, vur acknowledge-
ments are chiefly due to the treatises of Schlomileh, Serret,
and Laurent; and among English writers, besides Todhunter’s
Algebra, we have occasionally consulted the works of De
Morgan, Colenso, Gross, and Chrystal.

To the Rev. J. Welstenholme, D.Se., Professor of Mathe-
matics at the Royal Indian Engineering College, our thanks
are due for his kindness in allowing us te seloct guestions
from his unique collection of problems; and the consequent
gain to our Jater chapters we gratefully acknowledge.

It remains for us to express our thanks toour colleagues
and friends who have so largely assisted us in reading and
correcting the proof sheets; in particular we are indebted to
the Rev. H. C. Watson of Clifton College for his kindness in
revising the whole work, and for many valuable suggestions
in every part of it.

Juy, 1887, H. S. HALL
3. R. KNIGHT.

PREFACE TO THE THIRD EDITION,

Iy this edition the text and examples are substantially
the same as in previous editions, but a few articles have
been recast, and all the examples have been verified again.
We have also added a collection of three hundred Miscel-
laneous Examples which will be found useful for advanced
students. These examples have been selected mainly but
not exclusively from Scholarship or Senate House papers;
much care has been taken to illustrate every part of the
subject, and to fairly represent the principal University and
Civil Service Examinations,

Aleerel, 1854,
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HIGHER ALGEBRA.

CHAPTER L

RATIO.

1. DerinrrioN. Batio is the relation which ore quantity
bears to another of the same kind, the comparison being made by
considering what multiple, part, or parts, one quantity is of the
other,

The ratio of 4 to B is usnally written 4 : B, The quantities
A and B are called the ferme of the ratio. The first term is
called the antecedent, the second term the consequent.

3. To find what multiple or part 4 is of B, we divide 4
by B; hence the ratio 4 : B may be measured by the fraction

5 and we shall usnally find it convenient to adopt this notation,

In order to compare two quantities they must be expressed in

terms of the same unit. Thus the ratio of £2 to 15s. is measured
Z2x20 8

or =

15 37

Nore. A ratio ezpresses the mwmber of fimes thal one guantity con-
tains another, and thersfore every 7atio is an abstract quantity.

by the fraction

3. Since by the laws of fractions,

ma

mh’

it follows that the ratio @ : b is equal to the ratio ma : mb;

that is, the value of a ratio remains unaltered 3f the aniecedent
and the consequent are multiplied or divided by the same quantity.

H.H AL 1

o B



2 HIGHER ALGEBRA.

4. Two or more ratios may be compared by reduncing their
equivalent fractions to a common denominator. Thus suppose
@ : band x : y are two ratios, Now g = %’, and == b ; hence

by y by
the ratio @ : b is greater than, equal to, or less than the ratio
@ : y according as ay is greater than, equal to, or Jess than bz,

5. The ratio of two fractions can be expressed as a ratio

of two integers. Thus the ratio %% is measured by the

b d
a
) ad . , .
fraction ~; OF 73 and is therefore equivalent to the ratio
d
ad : bc.

6. TIf either, or both, of the terms of a ratic be a surd
quantity, then no two integers can be found which will exactly
measure their ratioc. Thus the ratio ,/2:1 cannot be exactly
expressed by any two integers.

7. Derinrriox. If the ratio of any two gquantities can be
expressed exactly by the ratio of two integers, the quantities
are said to be commensurable; otherwise, they are said to be
incommensurable.

Alhough we cannot find two integers which will exaetly
measure the ratio of twe incommensurable quantities, we can
always find two integers whose ratio differs from that required
by as small & quantity as we please,

9.9
Thus :iﬁ - :_;35;9‘5?_ —~ -559016...
/5 559016 559017
N .
and therefore = > ety 554 < Togan0

so that the difference between the ratios 59016 : 1000000 and
5 ¢ 415 Jess than -000001. By carrying the decimals further, a
closer approximation may be arrived at.

8. DrFiNtrioN. Ratios are compounded by multiplying to-
gether the fractions which denote them; or by multiplying to-
gether the antecedents for a new antecedent, and the consequents
for a new consequent,

Yzample. Find the ratic compounded of the three ratios
2a: 3D, 6ab : 5% cra



RATIO. 3

. . 2a Gab ¢
The required ratio=z x 55 %G
_4a
=z

9. Derisrrion. When the ratio « : b is compounded with
itself the resulting ratio is ¢*: b°, and is called the duplicate ratic
of @:b. Bimilarly o : 5* is called the triplicate ratio of « : é.

Also o : B? is called the subduplicate ratio of a : b.

Examples. (1) The duplicate ratio of 2a : 35 is 4a° ; 95"
{2) The subduplicate ratio of 49 : 25 is 7: 5.
{8) The triplicate ratio of %z : 1is 822 : L.

10. DerwrrioN. A ratio is said to be a ratio of greater
tnequality, of less imegquality, or of equality, according as the
antecedent is greater than, less than, or equal to the consequent.

11. A ratio of greater ineguality is diminished, and a ratio of

less imegquality is inereased, by adding the same quantity to both
ils terms.

Let % be the ratio, and let g‘;‘z be the new ratio formed by
adding # to both its terms,

N & a+z  ax-bx
wo FTbvs T b(ra)
_w(a-b).
Thbra)’
and @—& is positive or negative according as ¢ is greater or
less than b.

. & o+

Hence if @ > 8, gyt

. o a+x
and if a <b, Ayt

which proves the proposition.

Similarly it can be proved that a retio of greater inegquality
18 increased, and & ratic of less inequality is diminished, By taking
the same quantity from both its terms. .

12. When two or more ratios are equal many useful pro-
positions may be proved by introducing a single symbol to
denote each of the equal ratios.

1—2
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The proof of the following important theorera will illustrate
the method of procedure, .

a_© e
4 Sl Rk R
l.
o pa"+qc"+re“+...)n
each of these rtztzosu(an+q Frane g

where p, §, I, 1 are any quaniities whatever.

Let dt ok
then a="bk c=dk, e=fk...;
whence  pa"=pbk, qc" = qd'k", ve"=11"%", .5
Cpa gl et s ph R+ qd K TR
b gdtwrfr ... pdtgd e+
=k

1

pa“+¢1c"+m"ﬂ+ '“)“=k=€'= ¢ _
B+ g+

b d

By giving different values to p, ¢, #, » many particular cases
of this general proposition may be deduced; or they may be
proved independently by using the same method. For instunce,

. “lfats
; FEacFs
p a+c+et ...
i = s}
each of these ratios brd+fr ..’

a result of such frequent utility that the following verbal equi-
valent should be noticed: When a seriss of fractions are egual,
each of them i equal to the sum of all the numerators divided by the
sum of all the denominators.

a_ ¢ e
Ezample 1. HE':&:}" shew that
2 4-2¢% - Bas?  ace
W 3d-30/8  bdf”
Let i c"‘§=}c;

1737y
then e=bk, c=dk, e=fk;



RATTO. 5

. @b %% —3aelf WK1 2dSR3 - BhFOR
T TYSAT Syt T 1A 2d5f - 853

a_ & ¢

% <. ¢
I bxdxf

ace
a7

zZ_¥._2
Ezample 2. If rhat bt prove thai

24+at P+EF S+ ey +ei+lat bt
z+a  y+d  z+e  z+y+zta+bte

Tet =¥ =% =k, so that x=ak, y=bk, z=ck;
a b e

2o fH+a® (B+1)a
z+a  ak+a  k+1 7
. A tat y=+b‘3+z=+c=_{k’+1)a (k’+1}b+(k9+1)c
" Zra T y+b o zte T k41 k+1 PR
_{B+)) {a+b+c) '
- B+l
B atbtetlathtg?
T Oklatbte)tatb+e
_(ka+kb+ kel +{atb4e)
T (kaikbtRe)+at+bto
_(z+yta+latbte)?
T ztytztatdie

then

13, 1If an equation is homogeneous with respect to certain
quantities, we may for these quantities substitute in the equation
any others proportional to them, For instance, the equation

Iy + may'z + 7" =0
is homogeneous in , ¥, 2 Let o §, y be three quantities pro-
portional to =, ¥, z respectively,

_E_gi_f = = = N

Putk—amﬁ—y,sotha.tm ak, y= Bk, z=vk;
then l*BE + mafiyh* + nf*y"k* =0,
that is, {a®8 + maffy + nfi¥" =0;

an equation of the same form as the original one, but with
o, B, v in the places of =, y, 2 respectively.
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14, The following theorem is important.

Ir E.', z—‘-', ,;?, ;—” be unpquul fractiéns, of which the de-
1 9 2 a
nominalors are all of the same sign, then the fraction
a,va,+a + ... +a,
b +b,+b + ... +D,

lies in magnitude between the greatesi and least of them.

Suppose that all the denominators are positive, Let % be the

L4

teast fraction, and denote it by %; then

:’:k, et = ]Cbr,
gw‘zvk; oo = kb
1
g—’:- k; vy kb
2
and so on;

.~ by addition,

A A A @, > (b +b,+b ... +B)E;
Y e +a, .,
bbb +bﬁ}k’ thatls’}b,'

Similarly we may prove that
A L L LN
b +b, +b, + ... +&, 8’

where gﬁ is the greatest of the given fractions,

In like manner the theorem may be proved when all the
denominators are negative.

15. The ready application of the general principle involved

in Art, 12 15 of such great value in all branches of mathematics,
" that the student should be able to use it with some freedom in
any particular ease that may arise, without necessarily introducing
an auxiliary symbol.

E Ze 1. * __ ¥ __ =
oy I bte—a ¢ta-d a+b-¢’
prove that Try+z_z2H+3+y +x)+z{z+y)

atb+e 2 {az +by + ez) :



RATIO. 7

. . f 11
Each of the given fractions = Bum of nurmerators
sum of denominators
_ztytz ) 1
= Eae RURRSRIEIURNT s § R

Again, if we mmltiply both numerator sand denominator of the three
given fractione by y+z s+ z, +y respectively,

s wly+n) yfern) _ afrty)
each fra.ctlon_{y+z) (Bte-a) @+azj(cta-b) {F+y){atd-g)

sum of numerators
"~ sum of denominators

_Tytd+y{z+a)+z (z+y) (@.
2&x+2by+2cz

-, from (1) and (2),

zty+z_x(y+a+y ) a{z+y)

a+b+c_ 2(a:c+by+cz)
z _ ¥ —= z
Eza.mple 2 It l{mbi—'-'w~lﬁ] "m{ﬂc_{_m_mb) n{h-}-mb—ﬂc)’
rove that : = = = -
P oy +ea~ax)  ylataz—by) zlestby-cz)
z ¥ z
7 m B
WehaVe g = Ta b laTmb =T
¥.2
_.m+n
T 2la

=two mimilar expreasions;

ny+mz_ﬁlz+n'z__mz+ly
a b T e "

Multiply the first of these fractions sbove and below by z, tha second by
v, and the third by z; then

nay+maz _ lyst+noy _ mazdlyi
az

L=+ 3
_ Slyz
T by ter—ax
=two similax expressions;
1 " n

z [by+cz—{lla:} Syleztaz—by) % laz+by-£a)
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16, If we have -fwo equations containing #iree unknown
quantities in the first degree, such as

extby+ez=0 ... {1},
aE+by+ez=0 i (),

we cannot solve these completely ; but by writing them in the

form
2
@, (-z-) + & (%) +¢, =0,
(E)(t)eenn

.o .
we can, by regarding — and % as the unknowns, solve in the
%

ordinary way and obtain

e b, - b Y _ -,
- 1 - L
z  ab -ab z _ab —apb,

or, more symmetrically,

@ y A (3).

be,~ b0 ca—ca  ab —ab

Tt thus appears that when we have two equations of the typs
represented by (1) and (2) we may always by the above formula
write down the rafios :¥y: 2 in terms of the coefficients of the
equations by the following rule:

Write down the coeticients of x, %, » in ovder, beginning with
those of ; and repeat these as in the diagram.

5, ) i 5,

b? c'_' a? b!
Multiply the coefficlents across in the way indicated by the
arrows, remembering that in forming the products any one
obtained by descending is positive, and any one obtained by

ascending is negative. The three results

be,—be, ca,—ca, ab,—ab

ave proportional te , ¥, z respectively.
This is called the Bnle of Cross Multiplication.

I



RATIO.

Ezample 1. Find the ratios of £ : y : 7 from the equations
Toe=dy +Bz, 3z=122-+1ly.

By transposition we have Tz -4y -8z=0

12z + 1ly — 8z2=0.
Write down the cosfficients, thus

-4 -8 7T -4
11 -3 12 1%,
whence we obtain the produects

(~4)x (~8)—11x(~8), (-8)x12-(-3)xT,

Tx11-12x(=4),
or 100, =195 125;
F_¥ _ 2
100~ -757 1256°
. T Yy _i
thatis, 1iT°3573

Example 2. Eliminate z, y, z from the equations

@+ 0y +es=0

................................. 1},
A B+ a0 i e ()
g+ by degr=0. . oocciiiiiiiinn. Bh
From (2) aud (3), by eross multiplication,
z 2 .
byeg— batq = Cylly — Cylly = @yby — aghy

denoting each of these ratios by %, by multiplying up, substituting in {1},
and dividing out by k, we obtain
@ (Bay — By} + By (Coy — Cgtty) + 6y {@uby — agbad = 0.
This relation is called the eliminant of the given equations

Ezample 3. Solve the equaticns

as+by+cz=0

ber+cay +abz={b-¢c){c—a) (a—¥)...
From (1) and (2), by cross multiplication,

r __¥

Yo =~k suppose;
b-c c—a a—p ' BUPPORE;

. x=kb-c),y=k{c~a), z=k{a—0).
Bubstituting in (3],

kibe{b-c)+ealc~a)+abla-0)}=
E{-(b-c)fe-a)(a- b]} (
CE=-1

z=¢-b, y:a—c,z:b—-a.

~c){e—a){a—b),
e) (¢ —at{a—b};

whenes
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17. If in Art. 16 we put z=1, equations (1} and (2) become
ape+ by +e =0,
ax+dyt+e,=0;
and (3) becomes
x y 1

= - = ;
be,—be, ca,-ca  adb,—apb

or e iii?.:_b?cl LG% T

sa'
L gy A8 b,
albs_ 631161 a’lbs - “261

.~ G

Hence any two simultaneous equations invelving two un-
knowns in the first degree may be solved by the rule of cross
multiplication.

Ezample. Solve bz=3y~1=0, z+2y=12,
By transposiiion, 8z -3y - 1=0,
o2y - 12=0;
il ¥

1
6+2 —1+60 10+4’

he z—ég 5
waenca 13 Y713

EXAMPLES, I

1. TFiod the ratio compounded of
(1) the ratio 2 : 3b, and the duplicate ratio of 952 : ab.
(2) the subduplicate ratic of 64 ; 9, and the ratio 27 : 56.
2
—2—: : “-’%‘i , and the ratio 3az : 2by.
2. If2+7: 2({x+14) in the duplicate ratio of 5 : 8, find .

3. Find two numbers in the ratio of 7: 12 so that the greater
exceeds the Jess by 275.

4, What nurnber must bs added to each term of the ratie & : 37
to make it equal to I : 31

5. Ifz:y=38: 4, find the ratio of 7o~ 4y : 3w +y.
B, If15 (22°-y%="Tay, find the ratio of & : .

(3) the duplicate ratio of



RATIO,
@ ¢ &
T, if —b- = a ==:}-;,
2asht 4 Bnle? — Bt gt
prove that m— = Ej‘ .
g If % = %: 5 , prove that % ig equal to
@5+ 5+ ot
be+ di+ bled?’
9. If L A —
grr—p rip—¢ prg-r’
shew that (g—rye+r-plat+{p—g)z=0.

10, If-¥ _¥t¥

Z—z z

=§, find the ratiosof 2 : ¥ : &

11, If ¥tz  z+x  w+y

pbtge petge pated’
chew that 28T y+2) _(Groztleta)ytiat)z

at+bte be+ ca+ab
r_¥_2
12 ¥ e b ¢’

B4t B8 P+ (+y+aP+(et+bieP
show that T2 iR Pt @ty it(arbtep’
18 It 2y+2z-x=23+2z—y=2x+2y~z,

@ b ¢
shew that d 4 z

Frr%-a 9%e+2a-b Za+9b-e¢
14, If (@24 b2+ &) (af + 2 + 24 = (o + By +e2)?
shew that &:a=y:b=z:ec
15, If I (my +me—iz)=m (ne+lz—my)=n{le + my—ns),

prove

yrz—-o_ z2tx-y Z4Yy-—2
T T m oa
18, Shew that the sliminant of
ax+cy+be=0, ex+by +az=0, bz+tay+er=0,
pr:} &+ B4t - Babe=0,
17. Eliminate z, %, s from the equations
az +hy+gz=0, hv+by+fe=0, gr+fy+a=0.

11
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18, 1t

shew that

EIGHER ALGEERA.

r=cy+ bz, y=daz+on, s=brtay,
= _ ¥ 2
T—a2 1-82 1-¢°

19, Given that a(y+2)=2, b(z+2)=y, c(x+¥)=2

prove that

bo + ¢t abd+ 2abe=1.

Solve the following equations:

20.

24, If

shew that

Br—dy+Tz= 0, 21. rry= 5
Br—y—2e= 0, 32-Z2y+1Te= 0,
3t +7=18 2B+ 354+ 28 =167,
Ty 4 Jew =Axy, 23, 32%~-2y%+5:2=0,
21yz - Bar =4y, 7at —3y2 - 1522=0,
r4+2y+3:=19 Hr—dy+Te=86.
A LT n
R RN T NN B
) PRI " _o
JatJb T WJh ke Jetfa
l m %

(@B} e—Wah) (B-o){a-Vbe) (o-a) (b-na0)’

Solve the squations:

25.

26.

27, If
prove that
28, If
prove that
(n

®

ax- by +e2=0,
boz+coy + abz=0,
zyz+abe (&Fe 4Py +64%) =0
ar By + cx=alr+ by + 2 =0,
z+y+rt+b—c){c—a} (@-8)=0
a{y+x)==, bs+2)=y, ¢(z+y)=2
2 3 22
a(1-be) b{i-oa) c{l-ab)

ax+hy +g8=0, hx+by+f2=0, gz +fy+cz=0,

24 ¥ 2
be—fi ca—gt ab—k*
(Be - /%) (e — g7} (b — %) =( fg — oh) (gh— of ) (A ~ bg)-




CHAPTER IL
PROPORT{ON.

18, DrrmvimioN.  When two ratios are equal, the four
quantities composing them are sald to be proportiomals. Thus
4 ¢

if 5 =3 then a, b, ¢, 4 are proportionals. This is expressed by

saying that a is to & as ¢ is to d, and the proportion is written
a:bie:d;

or a:b=e:d

The terms o and d are called the extremey, & and ¢ the means.

19. If four quantities are in proporiion, the product of the
extremes ts equal to the product of the means.

Let a, b, ¢, d be the proportionals.

Then by definition g = fz;
whence ad = be.

Hence if any three terms of a proportion are given, the

fourth may be found. Thus if @, ¢, d ace given, then & = aif-

Conversely, if there ars any four quantities, g, 8, ¢, &, such
that ad = be, then a, b, ¢, d are proportionals; ¢ and d being the
extremes, & and ¢ the means; or vice versé,

20, DerviTiox. Quantities are said to be in continued
proportion when the frst is to the secomd, as the second is
to the third, as the third to the fourth; and so on. Thus

@ b6 d...... sre in continued proportion when
a b ¢
F e gT
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1f three quantities @, b, ¢ are in continued proportion, then
m:b=b:¢;
ac=1, [Art. 18.]

In this case & is said to be a mean proportional between a and
¢; and ¢ is said to be a third proportional to « and b.

21, If three quantities are proportionals the first 4s to the
third en the duplivate ratio of the first to the second.

. b
Let the three guantities be @, b, ¢; then g ==
Now a —_—E XE
¢c b e
e _a_ f .
TYET R
that is, a:c=a": 8%

It will be seen that this proposition is the same as the definition
of duplicate ratio given in Euclid, Book v.

22 Mfa:b=c¢:dande: f=g:h then will ae : if =g : dk.

For g=§2 and };.:-}%5
LY
T BT dh’
or ae 1 bf = og 1 dh.
Cor. If a:b=e¢:d,
and brax=d:y
then gix=¢:y.

This is the theorem known as ex agueli in Geometry.

23. It four quantities a, &, ¢, d form a -proportion, many
other proportions may be deduced by the properties of Fractions.
The results of these operations are very useful, and some of
them. are often quoted by the annexed names borrowed from
Geometry. ’
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(1) I a:b=c:d then b:a=d :c [Invertends.)
& ¢ & ¢
For 5= therefore 1_.-521-.—&,
that is é=££-;
a ¢
or bra=d:¢
(2) a:b=c:d, then a:c=3:4d. (4 liernando.]
ad be
For ad=be ; therefore d S
. ¢ b
that is, S=g
or are=0:4d

(3) Ifa:b=c:d,then a+d:d=c+d:d [Componendo.)
& ¢ :

For 3= therefore 6—71 _El+ 1;

. a+db c+d
that is N R
or a+b:b=¢c+d:d

(4) Mfa:b=c:d thena-b:b=c~d:d [Dividendo.]

@ ¢ c

Fora 2 therefore 3—1 7" 1

X a~-b e—d

that is, B Sl o
or a-b:b=c—-d:d

5y Matb=ec:d, then a+dia-b=c+d:ic~-d

a+bd c+d
For by (3) B S
-b e-d
and by (4) S
(s a+d e+d

.*. by division, b s’
or g+bia-b=c+d:c—d

This proposition is usually quoted as Cemponendo and Divi-

0.
Several other proportions may be proved in a similar way,
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24. The results of the preceding article are the algebraical
equivalents of some of the propositions in the fifth book of Euclid,
and the student is advised to make himself familiar with them
in their verbal form, For example, dividends may be quoted as
ollows ;

When there are four proportionals, the excess of the first above
the second is fo the second, ws the excess of the third above the
Jourth is to the fourth.

25. We shall now compare the algebraical definition of pro-
portion with that given in Euclid,

Euclid’s definition is as follows:

Four gquantities are said to be proportionals when if any equi-
multiples whatever be taken of the first and third, and also any
equimultiples whatever of the second and fourth, the multiple of
the third is greater than, equal to, or less than the multiple of the
fourth, according as the multiple of the first is greater than, equal
to, or less than the multiple of the second.

Tn algebraical symbols the definition may be thus stated :

Four quantities a, &, ¢, d are in proportion when pc’zgd
-7
according as pa %qb, p and ¢ belng any posisive iniegers whatever.

I. 'To deduce the geometrical definition of preportion from
the algebraical definition.

Since ‘; = 5, by multiplying both sides byg, we obtain
pa_pe.
gb " qd’

hence, from the properties of fractions,
= . =
pe= gd according as pa = gl
which proves the proposition.

IT. To deduce the algebraical definition of proportion from
the geometrical definition.

" = . >
(iven that pe = gd according as pa = gb, to prove

=i~
Al
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If!;f is not equal to f—i, one of them must be the greater.

Suppose g > 5; then it will he possible to find some fraction %

which lies between them, g and p being positive integers.

Hence g > E% .............................. (1},
¢ 7
and < T {2).
From (1) pa=gh;
from (2} pe<qd;

and these contradict the hypothesis.

Therefore g53.:1(:1 ars not unequal; that is

the proposition.

b_ E&' which proves
26, It should be noticed that the geometrical definition of pro-
- portion deals with concrele magnitudes, such as lines or areas,
represented geometrically but not referred to any common unit
of measurement. So that Euclid’s definition is applicable to in-
commensurable as well as to commensurable quantities ; whereas
the algebraical definition, strictly speaking, applies only to com-
mensurable quantities, since it tacitly assumes that a is the same
determinate multiple, part, or parts, of b that ¢ is of 4. But the
proofs which have been given for commensurable quantities will
still be trne for incommensurables, since the ratio of two incom-
mensurables can always be made to differ from the ratio of two
integers by less than any assignadble quantity. This has been
shewn in Art. 7; it may also be proved more generally as in the
next article.

87, Suppose that ¢ and b are incommensurable; divide &
into m equal parts each equal to 8, 8o that b=mp, where mis 2
pesitive integer. Alse suppose 8 is contained in @ more than n
times and less than #+ 1 times;

nf (n+ 1);3
then —6 = ;TB < Ik
that is, 2 lies between — and Ej—l 5

b m m

80 tha.tg differs from % by a quantity less tha.n‘;lm. And since we

H. H. A 9
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can choose 3 (our unit of measurement) as small as we please, m ean
be made as great as we please. Heuce  cal be made as small
T

as we please, and two integers n and m can be found whose ratio
will express that of @ and & to any required degree of accuracy,

28 The propositions proved in Art 23 are often useful in
solving problems. In particular, the solution of certain equa-
tions is greatly facilitated by a skilful use of the operations com-
ponendo and dividendo.

Example 1.

It (2ma -+ 6mb + 3ne -+ Oned) {Imaz — Bmb — Sns+ Ind)
= (2ma — 6mb + 8nc — Ind) (Pma+ 6md — Sne — Qnd}

prove that a, b, ¢, d are propartionals,

We have 2ma + 6mb + Bne + Ond - 2ma + 6mb — ne ~9nd.
2ma —6mb + 3ne — Ind  2ma — Bmb - 3ne+9nd’
.. componendo and dividenda,

2 (Zma+3nch _ 2 {2ma ~ 3ne)
© 2{6md +9nd) ~ 2 (6mb~ Ind)
Ima+3ne _ 6mb4-9nd
Ima - 3ng T 6mb—Ynd’
Again, componendo and dividendo,

Alternando,

4.ma, 19mb
6ne  18nd’
a b
whence o= c-i
or 1b=e:d

Emample 2, Solve the equatmn

NEtle /51 4z-1
) J 231 .J z-1 £
‘We have, compenendo and dividendo,
NEEL 4zl
Jeo1 dz-3’
. :c+1 16x’+ 8241
7=1  16zi- 2850
Again, componsende and dlwdendo,
2r  32x"-16z4-10

2T Baz-y !
x_];s_’:i Az + 5§
Bz—% °
whenoe 182° — 4z=1622—Bx 43 ;
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EXAMPLES. IIL .
1. Find the fourth proportional to 3, 5, 27.
2. Find the mean proportional between
(1) 6and 24, (2) 360a* and 2502
3. ¥ind the third proportional to 3 +% and 5 .
If @ : b=e¢: d, prove that
4, wlctac: BAd+ddi=(a+cP : (b+dpP
‘5. pattgb? : pat—gbl=pd+qd? : pdt—gd
6, u—c: b-—d=AEB+E: VBT
S R 3]
7. Aat+e: «;’bﬂ+d2=\/cw+%3 : \/bd+a—g:—.
If @, b, ¢, d are in continued proportion, prove that
8. a:d+d=¢: fdtd
9. 2a+3d : 3n—4d=2a+35% : 3a?— 45
10, («P+ 52+ ) (B + B 4-d¥) =(ab+ be+ cd)

11. If b is a mean proportional between a and e, prove that
@B+

L A

12. Ifa:b=c: d,and e: f=g : A, prove that

ac+bf 1 ae—bf=cg+dh 1 cg—di.

=B,

Solve the eguations:
25°—3x%+zx+1 _ Bad-zt4+5x-13

98 -3s—z-1 328—2*-5z+13’
A+ -9 -3  Srt42:2-To+3

A A2 +3 5 224 T2 -3’
(m+nlxr—{(e-b) (mitnlzt+ate
(m-njz—(e+h (m-n)rta-c

16. If a, b, &, d are proportionals, prove that
{a—b}a—e)

@

13.

14,

15.

ot+d=b+c+

17. If a, &, ¢, d, ¢ are in continued proportion, prove that
(b +be-hcd + deff=(aP + B+ 2+ ) (BP+ P4+ P+ &2).
2—2
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18. If the work done by »—1 men in x4-1 days is to thework done
by £+ 2 men in -1 days in the ratio of 8 : 10, find 2.

19. Find four proportionals such that the sumn of the extremes is
21, the sum of the means 19, and the sum of the squares of all four
numbers is 442.

20, Two casks 4 and B were filled with two kinds of sherry, mixed
in the cask A in the ratio of ¢ : 7, and in the cask B in the ratio of
1 : 5, What guantity must be taken from each to form a mixture
which shall consist of 2 gallons of one kind and 9 gallons of the cther?

21, Nine gallons are drawn from a cask full of wine; it is then
filled with water, then nine gallons of the mizture are drawn, and the
cask is again filled with water. If the quantity of wine now in the cask
be to the quantity of water in it as 16 to 9, how much does the cask
hold ? ’

29, If four positive quantities are in continued proportion, shew
that the difference between the first and last in at least three times as
great as the difference between the other two.

23, In England the population inecreased 15-9 per cent, between
1871 and 1881; if the town population increased 18 per cent. and the
country population 4 per cent., compare the town and country popula-
tions in 1871

24, In a certain country the consumption of tea is five times the
consumption of coffee. If @ per cent. more tea and 5 per cent. more
coffes were consumed, the aggregate amount consumed would be 7e per
cent, more; but if & per cent. more tes and & per cent. more co‘g’ee
wers consumed, the aggregate amount consumed would be 3¢ per cent,
more : compars ¢ and .

25. Brass is an alloy of copper and zinc; bronze is an alloy
containing 80 per cent. of copper, 4 of zinec, and 16 of tin. A fused
mass of brass and bronze is found to contain 74 per cent. of copper, 16
og iinc, and 10 of ¢in : find the ratio of copper to zine in the composition
of brasa,

26. A crew can row & certain courss up stream in 84 minutes;
they can row the same courss down stream in 9 minutes less than
they eould row it in still water: how long would they take to row down
with the stream?



CHAPTER IIL
VARIATION.

-29. DerinitioN. One quantity 4 ig said to vary directly
as another B, when the two quantities depend upon each other in
such a manner that if & is changed, 4 is changed in the same
ratic.

Nore. The word directly is often omitted, and 4 is said to vary
sa B

For instance: if a train moving at a uniform rate travels
40 miles in 60 minutes, it will travel 20 miles in 30 minutes,
80 miles in 120 minutes, and so on; the distance in each case
being increased or diminished in the same ratio as the time.
This is expressed by saying that when the velocity is uniform
the distance ig proportional lo the time, ov the distance varies e
the time.

30. The symbol o is used to denote variation; so that
A« Bisread “d varies as B

31. If A vartes az B, then A <8 equal to B multiplied by some
constant quomiity.

For suppose that o, @, a, o,..., 8,5, b,, b, ... are corresponding
values of 4 and B,

e @& b a b a
Then, by deﬁmtlon,glza, &;_5;’ a_’s__b_a} and so on,
P L T i i
“ETETE ...,eachbelngequaltob.

any value of A

is al the ) -
Hence the corresponding value of B 18 ALWRYE LhE sAme 5
that is, %: m, where m is constant.

S Ad=mB.


minkas 



22 HIGHER ALGEBRA.

If any pair of corresponding values of 4 and B are known,
the coustant m can be determined. For instance, if 4 =3 when
B=12

we have 3=mx12;
som=i
and A=} 4

32. DerrvimioN.  One quantity 4 is said to vary inversely
as another B, when A varies directly as the reciprocal of 5.

Thus if 4 varies inversely as b, 4 =%?: , where m is constant.

The following is an illustration of inverse variation: If 6 men
do a certain work in § hours, 12 men would do the same work in
4 hours, 3 men in 24 hours; and so on. Thus it appears that
when the number of men is increased, the time is propertionately
decreased ; and vice-versa.

Ezample 1. The cube roob of x varies inversely se the zsquare of y; if
#=8 whep y=8, find x when y =14

By supposition ,&’x=;—: , Whare m i8 constant.

Putting =8, y=3, we have 2:%",

e m=18,

18

and Nr="=;
I 7

henes, by putting y =g , we obtain =512,

Ezomple 2. The square of the time of & planet’s revolution varies as
the cube of ita distance from the Sun; find the time of Venus' revolution,
assuming the distances of the Earth and Venus from the Sun to be 91} and
66 millions of miles respectivaly.

Let P be the periodic time measured in days, D the distance in millions
of miles; we have Peo DF,

or kDA,
where % is some constant,

For the Earth, 865 x 865 =% x 91} x 014 x 91},

k T — M
whence P GF- ;
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For Yenus, Pi= i-ngé—;j %6666 %66

whence P=4x68x \/ﬁ‘_{ﬁ
3

]
=964 x /7233, approximately,
=264 x -85
—=224-4.
Hence the time of revolution is nearly 2243 days.

33. Drrmvimion. One guantity is said to vary jointly as a
number of others, when it vavies directly as their product.

Thus 4 varies jointly as B and €, when 4 =mBC. For in-
stance, the Interest on a sum of money varies jointly as the
principal, the time, and the rate per cent.

34. DrrwirioN. 4 is said to vary directly as B and in-
versely as €, when 4 varies as o

35, If A wvaries as B when C 43 constant, and A varies as O
when B is constant, then will A vary as BC when both B and C
vary.

The variation of A depends partly on that of B and partly on
that of . Suppose these latter variations to take place sepa-

rately, each in its turn producing its own effect on 4 ; alsc let
a, b, ¢ be certain simultaneous values of 4, B, €,

1. Let € be constant while B changes to b; then 4 must
undergo a partial change and will assume some intermediate value
o', where

9. Let B be constandt, that is, let it retain its value b, while ¢
changes to ¢; then 4 must complete its change and pass from its
intermediate value ' to its final value @, where

a C
7= &
4 & B C
L = i
From {1} and (2) R % =3
that is, A= BC,
be

or A varies as BC.
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36. The following are illustrations of the theorem proved in
the last article.

The amount of work done by a given number of men varies
directly as the number of days they work, and the amount of
work dome i» a given time varies directly as the number of men ;
therefore when the number of days and the number of men are
both varizble, the amount of work will vary as the product of
the number of men and the number of days,

Again, in Geometry the area of a triangle varies directly as
its base when the height is constant, and directly as the height
when the base is constant; and when both the height and base
are variable, the area varies as the preduct of the numbers
representing the height and the base.

Ezample. The volume of a right cireular cone varies as the square of the
rading of the base when the height is constant, and as the height when the
base is constant. If the radiua of the base is 7 feet and the height 15 feet,
$he volums is 770 eubic feet; find the height of a cone whose volume is 132
cubic fest and which stands on a base whose radiug is 3 feet.

Let % and r denote respectively the height and radius of the base
measured in feet; also let ¥ be the volume in cubie feet.

Then V=mrlh, where m iz conatant.

By supposition, T0=mxTx15;
22
whenca m= 5
22
s V= T rh.

.". by sabstitating V= 182, r=3, we got
22
1822 5 x 9 x B

whance h=14;
and therefore the height is 14 feet.

37. The proposition of Art. 35 can essily be extended to the
case in which the variation of 4 depends upon that of more than
two variables. Further, the variations may be ecither direct or
inverse. The principle is interesting hecause of its frequent oc-
currence in Physical Science, For example, in the theory of
gases it ia found by experiment that the pressure {p) of a gas
varies as the “absolute temperature” {f) when its volume (w) is
constant, and that the pressure wvaries inversely as the volume
when the temperature is constant; that is

o o {, when ¥ is constant;
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1 .
and P o, when £ is constant.

From these results we should expect that, when both £ and v ave
variable, we should have the formula

¢ .
P -, or pr= ke, where & is constant;

and by actual experiment this is found to be the case.

" Ezample. The duration of a railway journey varies directly =8 the
distance and inversely as the velocity; the velooity varies directly as the
sgasxe root of the quantity of coal used per mile, and inversely as the
number of carriages in the train, In a journey of 25 miles in half an hoyr
with 18 carriages 10 cwt. of coal is required; how much coal will be
consnmed in & journey of 21 miles in 28 minutes with 16 carriages?

Let ¢ be the time expressed in hours,
d the distance in miles,
v the velocity in miles per hour,
g the number of cwt. of coal used per mile,
¢ the number of carriages.

Wa have tec é,
T
and v e '
¢
cd
whence ta -,
ved e
or 1="22 , Where & is constant.,
N/

Subatituting the valuen given, we have (sinca g= ;—g)
1 _kxI8x25x5 '

g Ji

. _JB
that is, k—]m.
A 10 . cd
Hence T ET

fubstituting now the values of ¢, ¢, d given in the second part of the
gquestion, we have

28 _ JT0x18%x 31
B0 125%36.7g

) SJI0X16%21 4,
that is, NI=Tsams .~ a5 10
32
whence 4= 35"
21 %32

Hence the quantity of coal is = 5 fFgowh.

126
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EZAMPLES, IIT,
1. Ifa varies as y, and #=8 when y=15, find x when y=10.
2. If P varies inversely as @, and P=7 when ¢=3, find Z when
Q=23

8. If the square of r varies as the cube of 3, and 4 =3 when y=4,
find the value of ¥ when PRI

WE
. . . 3 10
4, 4 varies as B and € jointly; if 4=2 when B=5 and C’=§? )
find ¢ when 4=54 and B=3.

5. If A4 varies as €, and B varies 2s €, then A+ B and &/ 4B will
each vary as Ol

6. If 4 varies as B¢, then B varies mversely as-g )

. 2
7. P varies directly as © and inversely as R; also P= 3 when

Q=gand R=%: find @ when P=4/48 and B—/75.

8. If  varies as y, prove that 2®+y? varies as 22— 2%

9, If y varies as the sum of fwo quantities, of which one varies
directly as x and the other inversely as x; and if =6 when #=4, and
y==3% when =23; find the equation between = and .

10, If yis equal to the sum of two quantities one of which varies
as 2 directly, and the other as 22 inversely; and if ¥=19 when £=2, or
2; find y in terms of x.

11, If 4 varies directly as the square root of B and inversely as
the cube of O, and if 4=3 when B=258 and (=2, find B when 4 =24

and O’=é .

12. Given that z+y variea as z+%, and that x—y varies as z—lz' )

find the relation between z and z provided that s=2 when y=3 and
y=1

13, If A varies as B and ¢ jointly, while B varies as D%, and ¢
varies inversely as 4, shew that 4 varies as J.

14. If y varies as the sum of thres quantities of which the first is
constant, the second varies as &, and the third as a%; and if ¥=0 when
a=1, y=1 when =9, and y=4 when #=3; find y wvhen 2="7.

15. When a body falls from rest its distance from the starting
point varies as the square of the time it bas been falling : if a body falls
through 402% feet in 5 seconds, how far does it fzll in 10 seconds?
Also how far does it fall in the 10% second ¥
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16. Given that the volume of a sphere varies as the cube of its
radius, and that when the radins is 34 feet the volume is 1782 cubic
feet, find the volume when the radius is 1 foot 9 inches.

17. The weight of & circular disc varies as the square of the radiug
when the thickness remains the same; it also varies as the thickness
when the radius remains the same. Two discs have their thicknesses
in the ratio of 9 : 8; find the ratio of their radii if the weight of the
first is twice that of the second.

18. At a certaiu regatta the number of races on each day varied
jointly as the number of days from the beginning and end of the regatta
up to and including the day in question. On three successive days
there were respectively 6, 5 and 3races. Which days were these, and
how long did the regatta last? '

19. The price of a diamond varies as the square of its weight.
Three rings of equal weight, each composed of a diamond set in gold,
have values £a, £b, £z, the diamonds in them weighing 3, 4, 5 carats
respectively. Shew that the value of a diamond of one carat 1%

£(%57-2),
the cost of workmanship being the same for each ring.

20, Two persons are awarded pensions in proportion to the square
root of the mumber of years they have served. One has served 9 years
longer than the other and receives a pension greater by £30. If the
length of service of the first had exceeded that of the second by 4} years
their pensions would have been in the proportion of 9: 8. §:Iow long
had they served and what were their respective pensions?

21. The attraction of a planet on its satellites varies directly as
the mass (M) of the planet, and inversely as the square of the distance
(D} ; also the square of s satellite’s time of revolution varies directly
as the distance and inversely as the force of attraction. If my, dyy 2,

a}r;;l Mg dy &y are simultaneous values of A, D, 7 respectively, prove
that

met? _ d?

gt A
Hence find the time of revolution of that mcon of Jupiter whose
distance is to the distance of owr Moon as 35 : 31, having given

that the mass of Jupiter is 343 times that of the Earth, and that the
Moon's period is 27:32 days.

22. The consumption of coal by a locomotive varies as the square
of the velocity; when the speed is 16 miles an hour the consumption of
coal per hour 18 2 tons : if the price of coal be 10s. per fon, and the other
expenses of the engine be 11s 3d. an hour, find the least cost of & journey
of 100 miles,



CHAFTER IV,

ARITHMETICAL PROGRESSION,

38. DErFiNiTION. Quantities are said to be in Arithmetical
Progression when they increase or decrease by a common dif-
Jervenee,

Thus each of the following series forms an Arithmetical
Progression :

The commwon difference is found by subtracting any term of
the series from that which follows it. In the first of the above
examples the commeon difference is 4 ; in the second it is —8; In
the third it is d.

3¢, If we examine the series
a, a+d, a+2d, a+3d,...
we notice that in any term the cogfficient of d s always loas by one
than the number of the term in the series.
Thus the 3" term is a+ 24 ;
6% term is a+ 5d;
20% term is @ + 194 ;
and, generally, the pRtermisa+(p-—1)d
If » be the number of terms, and if ! denote the last, or
n™ term, we have l=a+{n-1)d

40. To find the swm of a number of terens in Arithmetical
Progression. '

Let ¢ denote the first term, d the common difference, and =
the number of terms. Also let [ denote the last term, and s
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the required sum ; then
s=a+le+dy+{a+3qd)+...+ -2y +({-d)+1;
and, by writing the series in the reverse order,
s=l+{I-d)+{{-2dY+ ... +{a+2d)+ {u + d) +a.
Adding together these two series,

B=(a+l)+(a++(a++ ... ton terms

—nfa+D),
B (@t D) ereene e e, L);
and l=a+{n—1)d..... e (2),
e s=g{2as (= 1}d} e, e, (3.

41. In the last article we have three useful formula (1),
(2), (3); in each of these any one of the letters may denote
the unknown quantity when the three others are known. For
instance, in (1} if we substitute given values for s, n, I, we obtain
an equation for finding e; and similarly in the other formule.
But it is necessary to guard against a too mechanical use of these
general formulee, end it will often be found Letter to solve simple
questions by a mental rather than by an actual reference to the
requisite formula.

Ezample 1. Find the sum of the series 53, 6§, 5,......10 17 terma.
Here the common difference is 1}; henee from {3),
the sum =lg {2:-:1?1+16x11-}
17
5 (11+20}
17 x 31
B
=263},
FExample 2. The first term of a peries ia 5, the last 45, and the sum
400: find the number of terms, and the common difference.

I n be the number of ﬁerma, then from (1)

400:3(54—45);

whaenoe n=18§,
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If 4 be the common difference
45=the 16" term =3 +15d;
whence d=23.
42, If any twe terms of an Arithmetical Progression be
given, the series can be completely determined; for the data

furnish #eo simultanecus equations, the solution of which will
give the first term and the commen difference.

Brzample. The 54™ and 4" ferms of an A.P. are -~ 61 and H4; find the
23™ term.

If & be the firat term, and d the coramon difference,
— 8l =the 54" term=a+53d;
and Gd=the 4" term=a+3d;
whenee wa obtain d= —g-, a=TL}:
and the 237 term=ua + 22d =163.
43. Dermvirion. When three quantities are in Arithmetical

Progression the middle one is said to be the arvithmetic mean of
the other two.

Thus e is the arithmetic mean between ¢ — d and @+ d.

44. To find the arithmetic mean between fwo given quantities.

Let @ and & be the two quantities; A4 the srithmetic mean.
Then since @, A, 5 are In A.P. we must have

b4 =4-a,
each being equal to the common difference ;
whenee 4= %‘—é

45. Between two given quantities it is always possible to
insert any number of terms such that the whole series thus
formed shall be in A.P.; and by an extension of the definition in.
Art. 43, the terms thus inserted are called the arithmetic means.

Ezample. Insert 20 arithmetic mesns betwaer 4 and 67.

Including the extremes, the number of terms will be 22; so that we have
to find a seriex of 22 terms in A P., of which 4 is the first and 67 the last.

Let 4 be the common difference;
then 67 =thg 22" term~4 +21d;

whence d=3, and the series is 4, 7, 10,......81, 64, 67;
and the required means are 7, 10, 13,...... 58, 71, 64. e
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48. To insert o given number of arithmelic means bebween
fwe given quantities.
Let ¢ and b be the given quantities, n the number of means.

Including the extremes the mumber of terms will be %+ 2;
so that we have to find a series of » + 2 terms in AP, of which
@ is the first, and b is the last.

Let d Le the common difference ;

then b=the (= + 2)™ tern
=a+{n+l)d;
whence d= ?)_—_g,;
n+1

and the required means are

aH_b—a “_'_2(6—:1) a+n(b—a)
n+i’ n+l T n+l
Ezunple 1. The sum of three rumbers in A.P. is 27, and the sum of
their squares is 293 ; find them.

Let @ be the middle rnumber, d the common difference; then the three
numbers are a -~ d, a, a +d.

Hence a-d+e+a+d=27;
whenee =19, and the three numbers are 9 —d, 9, 9+ 4.
(O — AP+ 81+ (944)°=203;
whence d==3;
and the numhbers are 4, 9, 14.

Fzample 3. Find the sum of the first » ierms of the series whose
n™ ferm is 3n—1.

By putting n=1, and n=p respectively, we cbtain
first term =2, lash term=3p-1;

. =2 ~1=f
. sm—2(2+3p 1]|+2 (3p+1)

EXAMPLES. IV.a.

1, Sum 2, 3}, 44,... to 20 terms.
2, Sum 49, 44, 39,... to 17 terms.
3 2 7

3, Sumz, 5 E,...tolQ terms,
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BSum 3

i~

A %, 1%,... to % terms.

Sum 375, 35, 3'25,... to 16 terms.
Sum -7} —Y7, —6%,... to 24 terms
Sum 13, -31, —7°5,... to 10 terms.

343, 1;‘;,... to 50 terms.

-] R o
P A

o
b

J3’
9. Sum J5 «/5’ o5,... to 25 terms.

10. Sum o@— 38, 2a—5b, 3a~—"T5,... to 40 terms.
11. Sum 20— b, 4a— 3b, 8a—5b,... to n terms.

12, Sum ?-;2’:? , o 3‘}2_3},‘.. to 21 terms.

13, Insert 19 arithmetic means between % and —93.

14. Insert 17 arithmetic means befween 3% and —414.
15. Insert 18 srithmetic means between — 36z and 3.
16. Insert z arithmetic means between z? and 1.

17. Find the sum of the first # odd numbers.

318, In an A.P. the first term is 2, the last term 29, the sum 155;
find the difference.

19. The sum of 15 terms of an A. F. is 600, and the common differ-
ence is 5; find the first term.

20, The third term of an A.P. is 18, and the seventh term is 30 ;
find the sum of 17 terms.

21, The sum of three numbers in A. I, is 27, and their product ix
504; find them,

29, The sum of three numbers in A. P. is 12, and the sum of their
cubes iz 408; find ther.

98 Find the sum of 15 terms of the series whose n* term is 4n-+1.

Find the gum of 35 terms of the saries whose p* terin ish+2.
i

Find the sum of p terms of the =eries whose #* term is :+ b

Find the sum of n terras of the series -
8 _ g _
2e 1'4@_§, Gat -5

a a

g B R

aeer
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47. In an Arithmetical Progression when s, a, d are given,
to determine the values of » we have the guadratic equation

s:%{f&ai»-(n—l)d};

when both roots are positive and integral there is no diffieulty
in interpreting the result corresponding to each. In some cases
a suitable interpretation can be given for a negative value of «.

Ezample. How many ferms of the series -9, -6, -3,... must be
taken that the sum may be 662

Here g{—l&-h(n-l) 3} =66
that is, n¥-Tn—-44=0,
or : n-11) (n+4)=0;
. m=1lor—4.

If we take 11 termes of the series, we have
-8, -6, —8,0,8, 8,9, 12, 15, 18, 21;
the sum of which is 6.

If we begin st the last of theee ferms and count backwards four terms, the
sum is aleo 66; and thus, although the negative solution dozs not direstly
answer the question proposed, we are engbled to give it an intelligible meaning,
and we see that it answers s guestion closely connected with that to which
the positive solution epplies.

48, We can justify this interpretation in the general case in
the following way.
The equation to determine = is
dn*+{(2a—dn—2e=0 ... ..., (1).

Singe in the case under discussion the roots of this equation have
opposite signs, let us denote them by » and -n, The last
term of the series corresponding to n, is

a+(n—1}d;

if we bogin at this fermn and count dackwards, the common
difference must be denoted by —d, and the sum of », terms is

B{2Ern1d (-1 (- d)},

and we shall shew that this is equal to 4
H. H. A. 3
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For the expression =?—;? {2a +(2n, —n,—1) d}

= % {20:%2 +dnnd-n(n +1) d]»

L\OI -

{../n nd—(dn - 2a—d. ﬂg)}

;...u

= (43 — %) =g
since —n, satisfies dn®+ (2a — d) n—33=0, and —nn, is the
praduct of the roots of this equation,

49. When the value of n is fractional there is no exact nuya-
Ler of terms which corresponds to such a solution.

Ezample, How many terms of the series 26, 21, 16,.. must Le taken to
amount to 74?7

Here g{saﬂn—n(-s)}:u;
that is, &1° — 5T+ 148 =1,
or (n-4)(5n-37)=0;
<. n=4 or T§.

Thus the number of terms is 4 It will be foond fhat the sum of 7 terms
is greater, while the sum of 8 terms is less than 74.

50. We add some Miscellaneous Examples.
Example 1. The sums of = texms of two arithmetio series are in the

ratic of Tn+1: 4n+-27; find the ratic of their 11% tsrms, .

Tet the first term and common difference of the two series be a, 4; and
dg, dy TERpRGtively,
2o, +{n-1d;  Tu+l

We have Sagr=T)d, ~ I+ 2T
a, + 104, .
Now we have to find the valae of PRINTEA ; hence, by putiing n=21, we
obiain
%u,+20d, 148 _4_
90,3204, 1317 8"

fhus the required ratio ie 4 r 3.

Example 2. If 8, 8, 8,....8, sre the sums of n Serme of axithmetio
saries whose first terms are 1, 2 5 4,... snd whose common differences are
1, 8, 5, 7,...; find the value of

H+8+8+.. +8,.
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#{n+1)
2 L
n(3n+1)
2

We have S]_:g' Z2+n-1))=

¥

SFE A+(n-1)3}=

s—§{6+(“ 1)} = n(a-r;_:}-__:_l_},

S,=5 (2 +(n-1) (- V}=7 (@ -1 n+l};

.. the required som=; {(n+1)+(Bu+1)+......(20- 1.5+ 1)}

b-'ll:i t\’.)l'é'-‘l

{{n+3n+8n+..2p 1. u)+p}
=’§‘{n[1+3+5+...2p—1)+19}
=g(npﬂ+p]

= %9 {,”P +1).

EXAMPLES. IV.Dh

1. Given g= -2, d=4 and #=1860, find =.

2, How many ferms of the series 12, 16, 20,... must be taken to
nake 2081

3. Inan A. P. the third term is four times the first term, and the
fixth term is 17; find the series.
4, The 2, 31%, and last terma of an A.P. a.re’?g, and - 6%

espectively ; find the first term and the number of terms.

5, The 4% 42" and last terms of an A.P. are 0, —95 and - 125
espectively; find the first $erm and the number of terma.

6. A man arranges to pay off a debt of £3600 by 40 annual
nstalments which form an arithmetic series, When 30 of the iustal-
pents are paid he dies leaving a thzrd of the debt unpaid: find the
ralue of the first instalment,

7. Between two numbers whose sum is 2} an even number of
withmetic means is inserted; the sum of these means exceeds their
mber by unity : how many means are there ?

8. The sum of » terms of the series 2, 5, 8,... (s 950: find n.
3--27
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. 1 1
9. Sum the series LI S ... to » terms.

10. If the sum of 7 terms is 49, and the sum of 17 terms is 289,
find the sum of » terms.

11, 1f the o™, ¢*, #*" terms of an A. P. are &, b, ¢ respectively, shew
t (g—7)at(r—p)b+{p—q) c=0.
12. The sum of p terms of an A. P. is ¢, and the sum of ¢ terms is
#; find the sum of p+ ¢ terms.

13, 'The sum of four integers in A.P. is 24, and their product is
945 ; fnd them.

14. Divide 20 into four parts which are in A. P., and such that tha
product of the first and fourth is to the produnet of the second and third
in the ratio of 2 to 3.

15, The p* term of an A.P. is ¢, and the ¢ term i3 p; find the
m*® term. .

16, How many terms of the series 9, 12, 15,... must be taken to
make 3061

17. If the sum of » terms of an A. P. is 2n+3#% find the »™ term.

18. If the sum of m terms of an A. P. i3 fo the sum of » terms as
m? to n? shew that the m' term is to the n' term as @m—1is to 2n—1.

18, Prove that the sum of an odd number of terms in A. P. is equal
to the middle term multiplied by the number of terms,

20, If s=n (52 =3) for all values of n, find the p* term.

21. The number of terma in an A. P. is even; the sum of the odd
terrnas is 24, of the even terms 30, and the last term exceeds the first by
10} : find the number of terms. .

22, Therearetwo sets of numbers each consisting of 3 termsin A. P
and the sum of esch set is 15, The common difference of the first sot
is grester by 1 than the common difference of the second set, and the
product of the first set is to the product of the second set as 7 to 8: find
the numbers.

28, TFind the relation between & and y in order that the ™ mesn
between x and 2y may be the sane as the ™ mean between 2x and g,
n meaans being inserted in each casa.

24, If the sum of an A. P. is the same for p as for ¢ terras, shew
that its sum for p+ ¢ terms is zero,



CHAPTER V.
GEOMETRICAL PROGRESSION.

51. DsriNiTION. Quantities are sald to be in Geometrical
Progression when they increase or decrease hy a constant factor.
Thus each of the following servies forms a (Geometrical Pro-
gression :
3, 6,12 24, ...

p 111
+ 3 3 9’ —27 FEEEEERR R EY
@, o, ar', ar’, ..o

The constant factor is also called the commeon ratio, and it is
found by dividing any term by that which immediately precedes
it. In the first of the above examples the common ratiois 2; in

the second it is — % ; in the third it is ».

52, If we examine the series
a, ar, ar’, ar’, ar’, ......

we notice that in any term the index of T s always less by one
than the number of the term an the series.

Thus the 3™ term is ar;
' the 6% term is ar';
the 208 term is ar'?;

and, generally, the pi term is ar®™.
If n be the nmmber of terms, and if [ denote the last, or n't
term, we have f=ar""

53. Dermvirion. ‘When three quantities are in Geometrical
Progression the middle one is called the geometric mean between
the other two.
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To find the geometric mean between two given quantisies.

Let ¢ and & be the two quantities; & the geometric mean.
Then since @, &, barein G. .,

b_¢
e’
each being equal to the common ratio;
L F=ab;
whence G =, Jab.

Bi, To insert a given number of geometric means between
two given gquantities.

Let @ and & be the given gquantities, n the number of means,
In all there will be %+ 2 terms; =o that we have to find a
series of » 4+ 2 terms in Gl P., of which @ is the first and b the last,

Let r be the common ratio ;
then b=the (n+2)* term

— Mn-l-l;

Hence the required means arve ar, er’,... ar", where r has the
value found in (1}

Ezample. Insert 4 geometric means between 160 and 5.

We have to find 6 terms In G, P. of which 160 is the first, and & the
sixth.

TLet ¢ be the common ratic;
then § =the sixth term
=1607%;
I

- ')J:ﬁ;

whenos rz-; H
and the meang axe 80, 40, 20, 10.
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55. Do find the sum of o number of terms in Geomeirical
Progression.

Let & be the first term, » the common ratio, » the number of
terms, and s the sum required. Then

ultiplying every term by r, we have

2 L]

remar+artt ... tar e+ ar’,

Hence by subtractiorn,
rs—g=ar" —a;

Slr=1s=alr—1);

Lol =1)
e 8= —-—":—1— ....................... (1)-
Changing the signs in numerator and derominator,
af{l—r")
e it 2.
$= T, @

Nore. It will be found econvenient to remember beth forms given above
for &, using (2} in all cases except when + is positive and greater than 1.

Since ar~1=1, the formuls (1) may be written

8_1‘:',—0._
Tr-1"

& form which iz sometimes useful.

Ezample. Sum the series g, -1 3 v o 7 terms.

1§} .-

The common ratic = - g; hence by formula, (2)

. (Y
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1 1 1
56. Consider the series 1, 5o g geree
The surn to » terms ==
1-3
1
~2(1-3)
gL
2

From this result it appears that however many terms be
taken the sum of the above series is always less than 2. Also we
see that, by making » sufficiently large, we can malke the fraction
=T a8 small ag we please, Thus by taking a sufficient number
of terms the sum can be made to differ by as little as we please
from 2.

In the next article a more general case is discussed.

57, From Art. 55 we have s:gq_—:}

@ ar”
Tler lep’
Suppose # is a proper fraction; then the greater the value of

n the smaller is the value of 7", and consequently of o ; and

therefore by making » sufficiently large, we can make t]i'l; :um of
n terws of the series differ from -i—j'—?-. by as small a quantity us
we please.

This result is usually stated thus: the sum of an infinite
number of terms of a decreasing Geometrical Progression is l—i i
or more briefly, the swm to infinity is 1;}1-' .

Example 1. Find thres numbers in G. P. whose sum is 19, and whose
product is 216.

Denqta the numbers by g, a, ar; then c—:x ax ar=210; henee a=6, and

‘the numbers a.reg , B, Br.
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2t §+6+ 6r=19;
T

o B-18r 1+ 6720
- 3 2
whence T =gor 3

Thus the numbers are 4, 6, 9.

Ezample 2. The sum of an infinits number of termain G. P. is 15, and
the sum of their squares is 45; find the geries.

Let ¢ dencte the first torm, r the common ratio; then the sum of the
]

terme is 'l;f;- ; and the sum of their squares is

I-#
Hence 1-"_-‘;= 15 ceercaire veerareenenn (1,
1&:45 ....................................... )
Dividing {2) by {1) 1:‘»—r=':~3 USROS )
and from (1) and (3) Trlas;
whence r=§, and therefore a=3,
Thus the series is 5, 1—39, %0, ......

EXAMPLES. V.a

1L Sum%, %, %,... to 7 terms.

2. Sum ~2, 2§, —3%,... to 6 tarms.
3 Sum%, 13, 3,... to 8 terms.

4 Sum 2, —4,8,.. to 10 terms.

5. Sum 163, 54, 1'8,... to 7 terms.
6. Sum 1, 5, 25,... to p terms.

7. Sum 3, —4, %‘,... to 9n terms.

8. Suml, /3, 3,... to 12 terms.

9 Sum \—;’é, -2, %, to 7 terms.
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1. Sam %, —g,... to 7 terms.

1
-3
11, Insert 3 geomeiric means hetween 2} and g .
1. Insert 5 geometric means between 3§ and 404.

13, Tnsert 6 geometric means between 14 and - 62‘4 .

Sum the following series to infinity:
8 3

14, £ - 1, 5 15, -45, 015, "0005,...
16. 1685 —111, "T4,.=~ 17. 3% 8-% 3-%,...
18 3, V8, 1, 19. 7, J42, 6,.

90. The sum of the first 6 terms of a G- P. is 9 times the sum of
the first 2 terms; find the ¢commen ratio.

21. The Afth terra of a G. P, is 81, and the second term iz 24; find
the series.

29, The sum of a G. P. whose common ratio iz 3 is 728, and the
last term is 486; find the firat term.

23. Io a 3. P. the firat termis 7, the last term 448, and the aum
889; find the common ratic,

24 The sum of thres numbers in . P. is 38, and their product is
1728; find thero.

25. 'The continued product of three numbers in G. P. iz 216, and
the sum of the productsofthem in pairs is 156; find the numbers.

26. If S, denote the sum of the series 1+ 442+, . ad {nf, and
2, the sum of the series 1 — 23 e® —  ad inf, prove that
St 8, =28,
27 If the p, g™, r* terms of a (. P. be , b, ¢ respectively, prove

a?~rhrPerda=1,

28. The sum of an infinite number of terms of & G. P. ix 4, and the
sum of their cubesia 192; find the series.
'58.  Recurring decimals furnish a good llustration of infinite
Geomstrical Progressions,
Ezample. Find the value of -423,
4934232823 ...
4, 93 23
=710 1bo0 * 160080 T
4.3 =3 .
=1¢ + ﬁ’?'l" 1'—0'5-5— ...... ;
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: . z 1
that is, 423_. 103(1-1-102 *igat e )
4 28 1
_E"'ﬁs'l_""f
il

23 100

“T0 165 59

4 23

~ 16750

1

~ 990"

which agrees with the value found hy the nsnal arithmeticsl rule.

59. The general rule for reducing any recurring decimal to
a vulgar fraction may be proved by the method employed in the
last example ; but it 1s easier to proceed as t'ollows

To find the value of @ recurring decimal.

Let P denote the figures whick do not recur, and suppose
them p in number; let § denote the recurring period consisting of
¢ figures; let D denote the value of the recurring decimal ; then

D="PRQQ............ ;
L1 D=P0QQ............ ;
and 1074 x D= PGQQQ . o.oono;
therefore, by subtraction, (10¢*7— 10*} D = PQ - P;
that is, 100 (10" -1y D= PR —P;
Pg-F
D . (IO*Q 1) 1827

Now 107~ 1 is & number consisting of ¢ nines; therefore the
denominator consists of ¢ nines followed by p ciphers. Hence
wo have the follewing rule for reducing a recurrmg decimal to s
vulgar fraction :

For the numerator subtract the tniegrol number consisting of
the non-recurring figures from the integral mumber consisting of
the nonrecurring and recurring figures; for the denominator take
a number consisting of as many nines as there are recurring figures
Jollowed by as many olphers as there are non-recurring figures.
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60, Do find the sum of n terms of the series
a, (a+d)r, (a+2d)r% (a+3d)e%.......
an which each ferm 45 the product of corresponding terms in an
arithmetic and geometric series,
Denote the sum by §; then
S=a+(a+dyr+(a+2d) "+ ... +(a+n—id)r;
~ o= ar + (& +d)r+. .. +{a+n-3dyr" "'+ (a+n— Ld) 7"

By subtraction,
S(l-ty=a+(dr+dr+.. +dr") = (a+n~1d)s"
r=1
A Gt
1-r
a +d¢'(1 -7 {a+n-1d)r"
- (T=2f I-r
Cor. Write § in the form’
a dr dar" (@+n—1d) s
. -2 (I=ry (1=ry l-7r :
then if r<C1, we can make #* as small as we please by taking n

sufficiently great. In this case, assuming that all the terms which
involve 1™ can be made so small that they may be neglected, we

obtain lﬁq';r + (—1% for the sum to infinity. We shall refer

to this point again in Chap. XXI.

—{a+n-1dyr;

S S

In somming to infinity series of this class it is usually best to
proceed as in the following example.

Ezample 1. I z<1, sum the series
' ' 1+2% 822+ 423+ ...,.. to infinity.
Teet ' S=1+2+800+ 4P ... ;
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4 7 10

Example 2. Sum the geries 14 © +52+53+ . to n terms.
4 7 10 dn-2
Lat 5= 1+5+52+53 “““““ +'TN_’1;
1 1 4 7 3n-5 Hn-2
. gS— g+‘5—5+5—3+ ...... "{"—57‘:1- -*-51‘—;
. 48—1 3.3 8 3 in-2
- FS= + g-rﬁ—.a+5—3+ ,,,,,, +‘5FJ. T TE
1 3 1 1 +]. In-2
=14z (1hgtmho. 5 T
1
__1+§ 1 S T
- 5 1 1 T e
T3
3 1 3n-2
=1+z(1—5T-1)‘?r'
27 _ 12017,
T4 4.5
. 3_35 120+ 7
AR T- I T TR

EXAMPLES. V.b.

Sum 1+2a+3a2+4a3+ . to n terms.

7 31
16 +64 +gggt - to infinity.

- Bum 1434528+ 7034924+ ... to infinity, 2 being < 1

-
.

Sum 1+4+

[S- I -]
. H

o

SBum 1+2+22+ i+ ton terms,

3 7

Sum 1+2+4+8+ . to infinity.

. Sum 143z+4+62%+102%+ ... to infinity, # being < L

Prove that the (n+ 1)* texm of a Q. P., of which the first term
ia @ ang the third term b, is equal to the (2n+])“‘ term of & G.P. of
which the first term is & and the fifth term B.

£, "The sum of 2n terms of a G. P. whose first term is & and com-
mon ratic r i8 equal to the sum of » of & G. P. whose first term 18 & and
common ratio #2. Prove that b is equal to the.sum of the first two
terms of the first series.

=1,
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9, Find the sum of the infinite series
T+ (L+8) r+(1+54+ 502 H{1+ b+ 52459 r"+
r and b being proper fractions.

10, 'The sum of thres numbers in G P. is 70; if the two extreimes
be multiplied each by 4, and the mean by 5, the products are in A. P._;
fnd the numbers.

11, The first two terms of an infinite G. P. are together equal to 5,
and every term is 3 times the sum of all the terras that follow it; find

the series.
Sum the following series :
12, v+4a, 4%42a, 284 3a.., to n terms.
13, z{zt+p)+a? (:e:2 +¥9)+2% (23455 +... to n termos.

1 1
14, a+§,3a 6’ @+ 15+ .. to 2p terms.
2 . M
15, §+332 23.4.; 35+2%+...t0mﬁmty.
4 65 4 5 4 5 . ¥
16, ?—§5+$§—ﬁ+7-5——ﬁ+...tomﬁmty.

17. Ifa, b, 6, d bein G. P, prove that
(B-et{e-a)i+{d-m={ag-d)

18. If the arithmetic mean between ¢ and b is twice as great as the
geometric oean, shew that a - b=2+./3: 3-./3. :

1%. Find the sum of n terms of the series the r* term of which is
(Zr+1) %,
20. Find the surn of 2» terms of a series of which every even term

is @ times the term before it, and every odd term ¢ times the ferm
before it, the first term being unity.

21. If §, denote the sum of » terms of & G P. whose first term s
4, and common. ratio r, find the sum of §;, 83, 85,... 85 -0

22, If &, Sy Sp...8, are the sums of infinite geometrio series,
whone first terms are 1, 2, 3,...p, and whose common ratios are

111
5 3 4,...}) respeotwely,
prove that 8+ 8y 4 Syt 48, =% (p+3)

23. If r < 1 and positive, and an is a positive integer, shew that
m+ 1) (L —r)<] — I+l
Hence shew that »* is indefinitely small when % ia mdeﬁnltely great,
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HARMONICAL PROGRESSION. THEOREMS CONNECTED WITH
THE PROGRESSIONS,

61. Dzrinirion. Three quantities o, b, ¢ are said to be In
. ; o a-b
Harmonical Progression when - = .
¢ b-—c¢
Any number of quantities are said to be in Harmonieal
Progression when every three consecutive terus are in Har-
monical Progression.

63. The reciprocals of quantities in Harmenical Progression
are in Arithmetical Progression.
By definition, if a, 3, ¢ are in Harmonical Progression,
o w—b
¢c b-¢’
mab-cy=c{a-1),
dividing every term by «be,
1 1 1

11 11
¢ b b &’

which proves the proposition.

63. Harmonical properties are chiefly interesting becsuse
of their importance in Geometry and in the Theory of Sound:
in Algebra the proposition just proved is the only one of any
hwportance. There is no general formula for the sum of any
number of quantities in Harmonical Progression. Questions in
H. P. are generally solved Ly inverting the terms, and making use
of the properties of the corresponding A. P.
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64d. To find the harmonic mean between two given quaniities.
Let @, & be the two quantities, & their barmonic mean;

then-;, %, é arein A. P, ;

1 111
"H o a b H
2 1.1
H & b

Qab

=0

Ezample. Insert 40 harmonie means between 7 and %
let d be the

" Hers 6 is the 42 ferm of an A. P. whose first term ls 73
gommon difference; then

1 1
6-;:‘; + £14; whence d_f'

2
Thus the arithmetic means are = 72 :?,, 4}-, end therefore the har-

monic means are 3%, 2, :—l .

65. If 4, ¢, H be the arithmetic, geometric, and harmonie
means between a and b, we have proved

a+b
AmB s (1.
F=fah o (2)
2ab
=2 s (3).
Therefore 4g=2r8 2 e,
2 Ta+d

that is, & is the geometric mean between 4 and H.

From these results we see that
A G—ﬁiﬁ_J@_9+622J“

('
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which is positive if a and & are positive; therefore zhe arithmetic
mean of awy two positive quantities is greater than thelr geometric
mean.

Also from the equation @ =A4H, we see that & iz inter-
mediate in value between 4 and H; and it has been proved that
A > G, therefore & > & ; that is, the arithmetic, geometric, and
harmonic means between any two posttive quandities are in descending
order of magnifude.

., 66. Miscellanecous questions in the Progressions afford scope
for #kill and ingenuity, the solution being often neatly effected
by some special artifice. The student will find the following
hints useful.

1.- If the same quantity be added to, or subtracted from, all
the terms of an A P., the resulting terms will form an A.P. with
the same common difference as before. [Art. 38.]

2. If all the terms of an AP, be multiplied or divided by
the same guantity, the resulting terms will form an AP, but
with 2 new common difference. [Art. 38.] '

3. If all the terms of a (P, be multiplied or divided by the
same quantity, the resulting terms will form a G.P. with the
same commen. ratio as before. [Art. 51.]

4. Ifa b, o, d... arein GP., they are also in continued pro-
portion, since, by definition,
a b

Conversely, & series of cgua.ntatles in continued proportion may
be represented by x, 7, 2r

Ezample 1. If a% b’, ¢? are in ,&.P, shew that b+¢, ¢c+a, a-+b gre
in H.P

By adding ab + ac-+ e to each term, we see that
a®tabyac+be, bP4batbetac, ¢'+eated+abarein AP
that is {a4-8) {a+c}, {b+c) (B+a), (c-!-a) (c+¥) are in A. P,
v, dividing each term by (z ) (b+e¢) (c+ a.)
L 1
b+e' c4+a’ a+h
that is, bie,ed4a,at+berein HP.
H.H A 4

arein A.P.;
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Ezample 2. If 1 the last term, d the common difference, and s the sum
of # terms of an A. P, be connected by the equation 8ds={d +2{)%, prove that

d=2a.

Hines the given relation is true for any number of ferms, pubn=1; then

e={=3s.

Hence by substitution, Bad=(d +2a)%,

or {d—2a)2=0;
oo d=2a,
Erample 8. If the p™, g'*, v, s terme of an A. P. are in (. P., shew that
pr-g ¢-r,r—sarein G.P.

With the nsual notation we have
at(p-1d_at@g-1)d_a+(r-1)d
at+{g-Nd a+@r-1)d a+{s-1)d

.. each of thess ratios
Jletp-Ddi—jat(g-1)d} {a+(g~1)d} -{a+(r-1)d}
Tferle-N & ar -0 a - @r oD fati-1)a)
P—gq_ g9-v

g—f r—2

[Avt. 66. (4)];

Hencep-yg,¢—1 r—sarein GP.

67. The numbers 1, 2, 3,...... are often referred to as the
natural numbers ; the n term of the series is n, and the sum of

the first n terms'is%b (n+1).

68. To find the sum of the squares of the first n natural
numbers.

Let the sum be dencted by.§; then

S=1"+ 24+ 834 ... +nf

We have n*—(n—1Y=3n"-3n+1;

and by changing = into n—1,

=1y - n-2=3n-1P-3n-1)+1;

similarly  (n-2Y - (n—~3)’=3(n - 2)" - 3(n—2)+1;
$-9=8.3-3.3+1;

2 1*=3.20-3.941;

1P-0*=38.1%~3.1+1,
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Hencé, by addition,
=31+ 43+ ... +0) =31+ 2+3+... tn)+n

=3S-3n(1+1)

o

+ ¥,

Inin+1)
et

=

B8 =nt-nt
=nn+iin-1+8);

R

68. To find the sum of the cubes of the first n natural
‘nuwinbers.
Let the sum be denoted by §; then
S=12+2%+3+...... +#,
We have e (1) =4dn"— 60" +4n-1;
=1y - -2 =d(n-1P -6 (-1 +4(n—1)=1;
=2 -3y =4 (n-2-6(n-20+4(n-2)-1;
3F—2'=4.3¥-6.3+4.3-1;
W1 =4, 2%-6.2°+4.2-1;
- 0'=4. 1P 6. "4 4. 1-1.
Hence, by addition, .
n=48—6 1"+ 2+ 1)+ 4(1+2+ .. +n)—n;
o=t e+ (2 4n®) 4 (1424 m)
=n'+a+n{n+ ) {Gn+1)-3n(n+l)
=nln+1) (0 —n4 1 Ims1-2)
=n(n+1) (0" +2);
) S=n’(n+1)'={n(n+])}’
g 1 — .
Thus the sum of the cubes of the first 1 natural numbers iz
equal to the squars of the sum of these numbers.

The formuls of this and the two- preceding articles may be
applied to find -the sum of the squares, and the sum of the cubes

42
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70. In referring to the results we have just proved it will
be convenient to introduce a notation which the student will fre-
quently meet with in Higher Mathematics. We shall denote the
series

1+2+ 3+ ... +nby Zn;
IP+2°+ 3%+ ...+ 2" by Z0°;
10+ 324 3%+ ... +4° by 3n?;
where = placed before a term 31gmﬁes the sum of a,ll terma of
which that term is the general type.

Fxample 1. Sum the series
1.242.3+3. 4+ ...t0 n ferms.

The £™ term=n (n+[}=n?+n; and by writing down each term in =
gimilar form wa shall have two eclumas, one consisting of the first n natural
numbers, and the other of their sguares.

.. the som=2n?1 Zx
nn+l}{2n+l) nin+l)
= +
[3 2
=n(ﬂ.+1] {21’1+1 + 1}

2 -
_nn+ Dy
3 L
Ezample 2. S3um to » terms the series whose =™ term ia 2714 80 — §n?,
Let the aum be denvted by §: then
S=Z 21 +§Zrd - 6Znt

Lo 1+8n’ (r+1}2 Bain+1)(2n+l).
2.1 4 3

Caone l+n @+ {2n(n41) - (2n+1].}
=2 -14n{n+1}(2n-1).

EXAMPLES. VI a.

1. Fiod the fourth term in each of the following series:
() 2 93, 3.
2) 2,24 3,..
(3) 2 24, 3%,...

2. Insert twoe harmonic means between 5 aud 11,

3. Insert four harmonic means bebween g and %
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4, If 12 and 9% are the geometric and harmonic mesns, respect-
ively, between two numbers, find them.

B, If the harmonic mean betweon two quantities is to their geo-

n;‘etric means 23 12 to 13, prove that the quantities are in the ratic
of 4 to 9.

6. 1fa,d, ¢chein H, P, shew that
-aia-b=ate:ia-c
7. If the m™ term of a . P. be equal to n, and the n* term be

equal to m, prove that the (m-+n)* term is equal to fn

8. [If the g™, ¢™, " terms of a H. P. be a, b, ¢ respectively, prove
that {g—ribe+ (r—p)ea+{p—q)ab=0, -
9. Ifb is the barmonic meéan between ¢ and ¢, prove that
1 1 1.1
b=ati—c"aTe"
Find the sum of n terms of the series whose »™ terra is

10. 3nt-a. 11, ﬂs-[-g n. 12, n{n+2).

13. #%(2n+3). 14 3r-on 15. 3 (4*+2nf) — 405

16, If the (m+1)", {n4-1¥, and (~+ 1)* terms of an A.P. are in
G. P., and m, n,r are in H. P., shew that the ratic of the common
difference to tho first term in the A. P.is —2. '

17. If I, m, n are three numbers in G. P., prove that the first term
of an A. P. whose I't, m®, and »** terms are in IH. P. is to the common
diffarence as m4-1 to 1. .

18. If the sum of » terms of a series be g+ bntend find the r®
term and the pature of the series.
19, Find the sum of n terms of the seties whose s* ferm is
dn (P4 1)—(6n1+1).
20, If between any two quantities there be inserted two arithmetic

means 4,, 4,; two geometric means &, Gy; and two harmonic means
Hy, Hy; shew that GG, : HH,=A +4;: Hi+H,

21. If p be the first of » arithmetic means between two numbers,
and g the igst of » harmonic means between the same two numbers,

g,
prove that the value of ¢ cannocs le hetween p and (:—t—i) P

29, Find the sum of the cubes of the terms of an A. P., and shew
that it is exactly divisible by the sum of the terms. '
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Piurs oF Suor AND SHELLS,

1. o find the number of shot arranged in a complete
pyramid on a square base.

Suppose that each side of the base containg » shot ; then the
number of shot in the lowest layer is #°; in the next it is (n—1)*;
in the next (n-2); and so on, up to a single shot at the
top.

RN AR T C S S CR S R |

#{n+1)(2n+1)
- e [Art. 68.]

9. To find the mimber of shot arranged i a complote
pyramid the base of which is an equilateral triangle.

Suppoese that each side of the base containg » shot ; then the
number of shot in the lowest layer is

Cat(n-D+(n=2+ ... +1;
that.isf_ %—(?'-E;—D or % (n*+m).
I this result write w=1, 2~ 9,...... for n, and we thus obtain
the number of shot inthe 2nd; 3rd,...... layers.
oo =1 (30 + 3m)
+1 2
- ﬂ&_g(ﬂ__) [Art. 70.]

73. To find the number of shot arranged wn a complste
pyramid the bese of which is o rectangle, .

Let m and » be the number of shot in the long and short side
respectively of the base.

The top layer consists of a single row of m-~(n—1), or
m—n+1 shot;

- in the next layer the number is 2 (m—n + 2) ;
in the next layer the number is 3 (m —n + 3);
and 50 on;

~ in the lowest layer the number is 2 (m—n + ).



PILES OF SHOT AND SHELLES. 558

S S=(mon+ )+ 2m—n+2)+3(m-n+3)+ ... +n(m—nin)
=(m-n){1+2+3+. +n)+{(PF+2+8+ .. +n)
_(m-n)n(n+1) +n(n+l)(2n+1)
= 3 il A :

=20t 5 n )4 201}

_.n(n+1) (3m—nm+1)
= 5 )

T4, To find the number of shot arranged in an incomplete
pyramid the base of whick s a rectangle.

Let @ and & denote the number of shot in the two sides of the
top layer, # the number of layers.

In the top layer the number of shot is ab;
in the next layer the number is (e +1} (8 +1);
in the next layer the number is (& + 2) (b + 2} ;

and 50 on.;
in the lowest layer the number is (& + n—1) (3 +n—1)
or ab+ (@ +d){n~ 1)+ {m-1)"

o S=abn+(@+d)S(n-1)+3n-1)

=abn+(n—1)ff(a+b)+(n-l)n(zs.;—”ln)

Ao

:%{Gab-;- 3(a+b){n—1)+(n—1)@n-D)}

75. In numerical examples it is generally easier to use the
following method.

Example. Find the number of ghot in &n incomplets pquare pile of 16
courges, having 12 shot in each side of the top.
If wa place on the given pile a square pile having 11 shot in each side of
the base, we obtain a complete square pile of 27 courses;
5
and namber of shot in the completa pma:w =6930; [Art 71]

. 2x 23
also number of shat in the added pna:li’iie"_:sea;

.~ number of shot in the incomplete pile =8424.
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EXAMPLES. VLb.

Fiod the nuraber of shot in
1. A square pile, having 15 shot in each side of the base.
2. A triangular pile, having 18 shot in each side of the base,

3, A rectangular pile, the length and the breadth of the base con-
taining 50 and 28 shot respectively. .

4, An incomplete triangular pile, a side of the base having 25 shot,
and & side of the top 14.

5. An incomplete square pile of 27 courses, having 40 shot in each
side of the base.

6. The number of shot in a complete rectangwar pile is 24395 ; if
there are 34 shot in the breadth of the base, how many are there in its
length ?

7. The number of shot in the top layer of a square pile iz 169,
and in the lowest layer is 1089; how many shot does the pile contain §

8. Find the number of shot in a complete rectangular pile of
15 courses, having 20 shot in the louger side of its base.

9. Find the number of shot in an incomplete rectangular pile,
the nuraber of shot in the sides of its upper course being 11 and 18,
and the number in the shorter side of its lowest conrse being 30.

.10. What is the number of shot required to complete a restangular
pile having 15 and 6 shot in the longer and shorter side, respectiva%}, of
its upper course? _

11, The number of shotin a friangular pile is greater hy 150 than
Lalf the number of shot in & square pile, the number of layers in each
being the same; find the number of shot in the lowest layer of the tri-
sngular pile. p :

12 Find the number of shot in an incomplete square pile of 16
courses when the number of shot in the upper course is 1005 less than
in the jowest course, -

13. Bhew that the number of shot in a square pile is one-fourth the
number of shot in a triangular pile of deuble the mwmber of courses.

14 Tf the number of shot, in a triangular pile is to the namber of
shot in & square pile of double the number of courses as 13 to 175; find
the number of shot in each pile,

15. The value of a triangular pile of 16 Ib, shot is £51; if the
value of iron be 10s 6d. per cwt, find the number of shot in the
lowest layer. :

16. If from & complete square pile of n courses & triangular pile of
the same number of courses be formed ; shew that the remaining shot
will be just sufficient to form another triangular pile, and find the
number of shot in ita side. . _ '



CHAPTER VII.

SCALES OF NOTATION.

76. The erdinary numbers with which we are acquainted in
Arithmetic are expressed by means of multiples of powers of 10;
for instance

25=2x10+5;

4705 =4 x 10°+ 7T x 10°+ 0 x 10+ 4.

This method of representing nurobers is called the common or
denary scale of notation, and ten is said to be the radix of the
scale. The symbols employed in this system of notation are the
nine digits and zero.

In like manner any number other than ten may be taken as
the radix of a seale of notation ; thus if 7 is the radix, & number
expressed by 2453 represents 2x 7' +4xT'+5x7+3; and in
this scale no digit higher than 6 can oconr.

. Again in a scale whose radix is demoted by r the above
number 2453 stands for 20° + 4»°+ 5r+ 3.  More genersally, if in
the scale whose radix is v we denote the digits, beginning with
that in the units’ place, by a,, a,, @,,...a_; then the number so
formed will be represented by

n »—1 bl |
ar+a_rra N vafraria,

where the coefficients e, a__,,...0, are integers, all less than 7, of
which any one or more after the first may be zero.

Hence in this scale the digits are r in number, their values
ranging from 0 to » — L.

77. The names Binary, Ternary, Quaternary, Quinary, Senary,
Septenary, Octenary, Nonary, Dernary, Undenary, and Duodenary
are used to denote the scales corresponding %0 the values fwo,
tleree, . twelve of the radix
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In the undenary, duodenary, ... scales we shall require symbols
to represent the digits which are greater than nine, It is unnsual
to consider any scale higher than that with radix twelve; when
necessary we shall employ the symbals ¢, ¢, 7 as digits to denote
‘ten’, ‘eleven’ and ‘twelve’

It is especially worthy of notice that in every scale 10 is the
symbol not for ‘ten’, but for the radix itself.

78. The ordinary operations of Arithmetic may be performed
in any scale; bub, bearing in mind that the successive powers of
the radix are no longer powers of ter, in determining the carrying
Jgures we must not divide by ten, but by the radix of the scale
in question.

" Ezample 1. In the scale of eight subiract 871532 from 530225, and

multiply the difference by 27.

530225 136473
371532 27

186473 . . 1226235
275166
4200115

Explanation. After the first figure of the subtraction, since we cannot
take 8 from 2 we add 8; thus wehaveto fake 3 from ten, which lesves 7; then
6 from ten, which leaves 4; then 2 from sight which leaves 6; and so on.

Again, in multiplying by 7, wo have

) 8 x T=twenty one=2 x 8+5;
we therefore put down & and carry 2.

Next ‘ TxT+2=1fifty one=6x84+3;

put down 3 and carry 6; and so-on, until the multiplication is completed.

In tha addition,

3+b=nina=1xB8+1;
we therefora put down 1 and earry L.

Similarly 2+6+l=nine=1x8+1;
and : 641+ 1l=eight=1x8+0;
‘snd g6 on.
Example 2. Dm.da 15e£20 by 9 in the seale of twelve,
co 8115020
leedh. .. 8.

Explanation. Sinee 15=1x T'+ §=seventeen=1 x 3+ 8,
we put down 1 and carry 8.

Also 8 x T+ e=one hundred and seven—=e x 348,
we therefore put down ¢ and carry 8; and so on.
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" Egample 3. Find the square root of 442641 in the seale of saven,
442641(546

i34 1026
602

1416112441
12441

EXAMPILES. VIL a.

Add together 23241, 4032, 300421 in ths scale of five.

Find the sum of the nonary numbers 303478, 150732, 264205,
Subtract 1732765 from 3673124 in the scale of eight.

From 3¢e758 take 2¢46:2 in the duodenary scale.

Divide the difference between 1131315 and 235143 by 4 in the
scale of six.

6. Multiply 8431 by 35 in the scale of seven.
7. Find the product of the nonary numbers 4685, 3483.
8. Divide 152432 by 36 iu the scale of seven.

9. In the termary scale subtract 121012 from 11022201, and divide
the result by 1201

10, Tind the square root of 300114 in the quinary scale.
11, Find the square of ## in the scale of eleven.
12, Find the G. C. M. of 2541 and 3102 in the scale of seven.
13. Divide 14332216 by 6541 in the septenary scale.
Subtract 20404020 from 103050301 and find the square root of
the result in the octenary scale. '
15, Find the square root of e2¢001 in the scale of twelve.

16. The following numbers are in the scale of six, find by the OI'dl-
nary rules, without transforming to the denary scale:

(1) the G.C. M. of 31141 and 3102;
(2) the L. C. M. of 23, 24, 30, 32, 40, 41, 43, 50.

oo WP

79. To express a given integral number in any proposed scale.

Let & be the given number, and 7 the radix of the proposed
scale.
Let a,, a,, a,,...a, be the required digits by which ¥ is to be
expressed, beginning with that in the units’ place ; then
w—1

— A . 2
N=arta_r'+.. +er’+ar+a,

We have now to find the values of @ys By gy nn,
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Divide ¥ by », then the remainder is «,, and the quotient is

artta _rTR4 L+ ar+a,.

-1
If this quotient is divided by », the remainder is ¢ ;
if the next quotient ........ ... ay;
and so on, until there is no further quotient.
Thus all the required digits &, a,, o,,...a, are determined by
successive divisions by the radix of the proposed scale.

Example 1. Express the denary number 5213 in the geale of seven,

715213
T)744......5
THOG.....2
THE.....1
T2l
Thus 213 =2 x4+ 1x P41 xTi4+2xT+5;

and the number required is 21125,
Ezxample 2. Transform 21125 from scale seven to scale eleven.

€)21125
e}l244.. 1t
“e)BL......0
Bt

.. the required number is 3:0¢.
Explanation. In the first line of work
i 1=2xT+1=fifteen=1xe+4;
therefore on dividing by ¢ we put down 1 and carry 4,
Mext 4 x T+ 1=twenty nine=2xe+7:
therefore we put down 2 and carry 7; and go on.

Ezample 3. Reduce 7215 from scale twelve to seale ten by working in
acale ten, and verify the resalt by working in the scale twelve, d ¢

7215 17216
13 . 4874,.....1 Io &
88 ey n scale
In seale 12 il 0 of twelve
of ten A% 1., 4
1033 g2
19 . .
12401

Thus the resalt iz 12401 in each casa,

. . Brplanation. 72151n scale twelve means 7129+ 2 5 128411245 in
seale tcn.  The caleulstion is most readily effected by writing this expression
in the form [{(7x12+2)} x 32 +1}x 1245 thus we multiply 7 by 12, and
add 2 to the product; ther ws multiply 86 by 12 and add 1 to the prodact;
then 1033 by 12 and add 5 to the product. ' ’
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80. Hitherto we have only discussed whole numbers; but
fractions may also be expressed in any scale of notation ; thus

. 2
-25 in scale ten denotes — + —;
enotes 7 + 77

o)
o

4

25 in scale six denotes = + —;

52’
a

25 in scale # denotes E + .
: O
Fractions thus expressed in a form analogous to that of
ordinary decimal fractions ave called radiz-fractions, and the point
is called the radix-point.. The general type of such fractions in
scale 7 is

[=>]

63
=5+ 5+ ...
e

L

et

r .

where b, b, b,... are Integers, all less than r, of which any one
or more may be zero.

8l. T exprass a given radiz fraction in any proposed scale.

Let 7 be the given fraction, and r the radix of the proposed
scale. T

Let b, b,, b,,... be the required digits beginning from the
left ; then

LI
F= priie Sl SR

‘We have now to find the values of 5, &, &, .-...

Muitiply both sides of the equation by r; then

Hence &, is equal to the integral part of rF; and, if we denote
the fractional part by F|, we have

Mﬁltiply again by r; then, as before, J, is the integral part
of vF ; and similarly By successive multiplications by », each of
the digits may be found, and the fraction expressed in the pro-

posedsc_ale. '
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If in the successive multiplications by r any one of the
products is an integer the process terminates at this stage, and
the given fraction can be expressed by a finite number of digits.
But if none of the products is an integer the process will never
terminate, and in this case the digits recur, forming a radix.
fraction analogous to a recurring decimal.

Ezample 1. Express ;;g- &s & radix fraction in seale six.
363
-~ the required fraction =§ + éiul + % + 6:3;
=-4513.

Ezample 2. Transform 16064-24 from scale eight to scale fve,
Wo muosh treat the integral and the iractional parts separately,

5)16064 24
5)2644...0 5,
54404 TH
5)71...8 5
§)13...2 B
T8 5

404
5
024

After this the d_igits in the fractionsl part recur; hencs the required
number is 212340-1240, .

82, In amy scale of notation of whick the radiz is T, the sum
of the digits of any whole number divided by r— 1 will leawe the
same remainder as the whole number divided by v ~1, .
Let W denote the number, o, @, «.,......a the digits bepin-
ning with that in the units’ piac%,, and 3 the sam of glze dig%ltlsl'
then : : ) ’
N =g tortar+ ... ta 1 7
"S'=aq+cr,,+a,!+ ...... +a 3 L T

SN -S=a (r-D+a,(r~1)+ . + 6, (" =1y +a, ("~ 1):

+ a5 Ty
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Now every term on the right hand side is divisible by »—1;
N8

T = 6n integer ;

o
i) hy

=F3+ =

r—1 r—1’

where [ is some integer ; which proves the proposition.

Hence a numher in scale  will be divisible by » — 1 when the
sum of its digits is divisible by 1.

that is,

83. By taking r=10 we learn from the above proposifion
that a number divided by 9 will leave the same remainder as the
sum of itz digits divided by 9. The rule known as “ casting out
the nines” for testing the accuracy of multiplieation is founded
on this property. '

The rule may be thus explained :

Let two numbers be represented by 8a+ & and 9¢+d, and
their product by P; then

P =8lac + 98¢+ 9ad + bd.

3

Hence %— has the same remainder as gjgii; and therefore .the

sum of the digits of P, when divided by 9, gives the same
remainder ag the sum of the digits of bd, when divided by 9. If
on trial this should not be the case, the multiplication must have
been incorrectly performed. In practice b and d. are resdily
found from the sums of the digits of the two numbers to be
multiplied together. "

Ezample. Can the product of 31256 and 8427 be 2633953127

The sums of the digits of the muitiplicand, multiplier, and productaxe 17,
21, and 34 respectively; aguin, the sume of the digits of these three nurnbers
are 8, 3, and 7, whence dd=8x 8=2%4, which has 6 for the eum of the
digits; thus we have two different remainders, 6 and 7, and the multiplication
is ineorrect. :

84. If N denote any number tn the scale of 1, and D denote
the difference, supposed positive, between the eums of the digits in the
odd and the even places; then N—D or N+D i¢ a multiple of
r+ 1.



B4 . HIGHER ALGEBRA.

Let' a,, @), @y ---ene @, denote the digits beginning with that
in the units’ place; then
A a=1 at
Neg rar+ar®+ar’+...te 7 +ay.
o N-ag+a—agta— =6 (1) va, (- Dte F+ 1+,

and the last terra on the right will be @ (#"+1} or ¢ (" -1}
according as » is odd or even. Thus every term on the right is
divisible by »+ I ; hence

N—{a,—a +t,— -+ .. H

! = an integer.
r+l
J - = .
Now _ fg— @, + @y~ Gy k. =0;
} NaelD

is an integer;

4+
which proves the proposition.
Cor. If the sum of the digits in the even places is equal to

the sum of the digits in the odd places, 2 =0, and & is divisible
by r+ 1. :

Ezample 1. Prove that-4-L1 is a square number in any seale of notation
whose mdix is greater than 4.

Let r be the radix ;, then
4 1 1N
441=4+;+;—(2+;) ;
thus the given aumber is the aguare of 2-1
Ezample 3. In what scale is the denary number 2-4375 represented by
2157 :
Lat r be the scala; then

1 3 7
2+ ;'+;;,_—‘2 4375_2E,
whenes Tri-16r—-48=0; '
that is, (7r+12) (r—4)=0.,

Hence the radix is 4.
Sometimes it is best to use the following method.

Example 3. In what scsle will the nooary number 25607 be exprossed
by 101215 2 . :

~ The required seale muet be less than 9, since the new number appenrs
the greater; also it must be greater than §; therefore the required socale
musgt be 6, 7, or 8; end by trial we find that i is 7.
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Example 4. By working in tle duodensry scale, find the height of a
rectangular solid whose volume js 364 cub. ft. 1048 cub, in., and the area of
whose base ig 46 sq. 1t. 8 sg, in.

The volume is 364124% cub. ft., which expressed in the seale of twelve is
264734 cub. ft. .
The area is 4634 sq. {t., which expressed in the seale of twelve is 3608,
‘We have therefore to divide 264-784 by 82:08 in the seale of fwelve.
3108)26473:4(T-e

22 ¢48

36274

36274
Thus the height is Tft. 11ir,

EXAMPLES, VILb.

Express 4954 in the scale of seven.

Express 624 in the scale of five.

Express 206 in the binary scale.

Express 1458 in the seale of three.

Express 5381 in powers of nine.

Transform 212231 from scale four o scale five.

Express the ducdenary number 398¢ in powers of 10.
Transforn: 6612 from scale twelve to scale eleven.
Transform 213014 from the senary to the nonary scale.
10. Transform 23861 from scale nine o scale eight.

11, Transform 400803 from the nonary to the quinary scale.
12. Ezpress the septenary number 20665152 in powers of 19,
13. Transform triece from scale twelve to the common scale.

MO @D o3 ;o e b8

14, KExpress 136 as a radiz fraction in the septenary scale.

15, Transform 17-15625 from scale ten to scale fwelve.
18. Transform 200-211 from the temary to the nonary scale.

17. Transform 7103 from the duodenary to the octenary scale.
]

18. Express the septenary fraction %?2_55)& as & denary vulgar fraction

in its Jowest terms.
19. Find the denary value of the septenary numbers - and -i2.
20. In what scale is the denary number 182 denoted by 2222

2!’
21, In what scale Is the denary fraction 1;8 denoted by 0208 ¢

H. H. A. 2
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22, TFind the radix of the scale in which 554 represents the square
of 24.

23. In what scale is 511197 denoted by 17463351

24, Find the radix of the scale in which the numbers denoted by
478, 698, 907 are in arithmetical progression.

25. In what scale are the radix-fractions -16, 20, ‘28 in geometric
progression?

9%, The number 212542 is in the scale of six; in what scale will it
be denoted by 17486%

27, Shew that 148-84 is a perfect squarein every scale in which the
radix ia greater than eight.

98, Shew that 1234321 is a perfeet square in any scale whose radix
is greater than 4; and that the square root is always expressed by the
same four digits.

28, Prove that 1331 is a perfect cube in any scale whose radix is
greater than three.

30, Tind which of the weights 1, 2, 4, 8, 16,.., lbs. must be used to
weirh one ton.

31. Find which of the weights 1, 3, 9, 27, 81,... 1bs. must be used
to weigh ten thousand lbs., not more than one of each kind being used
but ie either scale that is necessary.

32, Shew that 1367631 is & perfect cube in every scale in which the
radixz is greater than seven,

33. Prove that in the ordinary seale a number will be divisibla by
8 if the number formed by its last three digits is divisible by eight.

34. Prove that the square of rrrr in the scale of s iz rrg0001, where
g, 7, 8 are any three consecutive integers.

35. If any number & be taken in the scale r, and a new number #*
be formed by altering the order of itg digits in any way, shew that the
differsnce between N and A" is divisible by r 1.

36, If a number has an even number of digits, shew thab it is
divisible by »+1 if the digits equidistant from each end are the same.

37. Ifin the ordina.r%y scale S be the sum of the digits of o number
&, and 38, be the sum of the digits of the number 3¥, prove that the
difference between &, and 5; ig a multiple of 3.

.38 Shew that in the ordinary scale any number formed by
writing down three digits and fhen repeating tiem in the same order
is a multiple of 7, 11, and 13.

. _39. In a scale who;e radiz is odd, shew that the sum of the
digits of any number will be edd if the number be odd, and even if
the number be even,

40. If = be odd, and a number in the denary scals be formed
by writing dewn = digits and then repeating them in the same order,
shew that it will be divisible by the number formed by the » digits,
and also by $090...9091 containing » - 1 digits,



CHAPTER VIIL

SURDS AND IMAGINARY QUANTITIES.

85. Inthe Blementary Algebra, Art. 272, it is proved that
the denominator of any expression of the form “ﬁ‘“ can be
¢
rationalised by multiplying the numerator and the denominator
by /b — /e, the surd conjugate to the denominator.
Similarly, in. the case of a fraction of the form m ,

where the denominator invclves three quadratic surds, we may by
two operations render that denominator ratienal

For, first multiply both numerator and denominator by
Jb+ Je—Jd; the denominator becomes (\/b+. /e)'—(/d)" or
b+ o—d+2,/be Then multiply both numerator and denominator
by (b +¢—d) -2 Jbe; the denominator becomes (5 + ¢ ~ d)* — 4be,
which is a rational quantity.

Example. Simplify ST
. 12 B+ /5 +22)

The expression = oo -
! B+ - O
_12(3+./5+2/9)

- 6+6./5

2345122 (WE-1)
T WEHLWE-D)

2425 +2,/10 - 2,/2
- E}

=142/5+./10- /2.
52
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86. Yo find ihe factor which will rativnalize any yiven Bino-
miad surd.
Cask 1. Suppose the given surd is J/e — Yb.

Let Ya=umx Yb=y and let n e the 1.cat. of p and ¢ then
2" and #" are hoth rational.

Now &" — y* is divisible by a - y for all values of n, and

2yt =y @ A e Y L +4"
Thus the rationalising factor is
L ST T + 3"

and the rational produet is z* - 2",
Case II.  Suppose the given surd is 2/a + b,
Let &, &, » have the same meanings as before; then
(1} If niseven, 2" — y* is divisible by = + ¥, and
-y =ty (T - Ty T T,
Thus the rationalising factor is
2 - Ty L + eyt
and the rational product is " —y".
(2) Tf wis odd, 2" + y* is divisible by 2+, and
Y=y "y —xy" Ty,
Thus the rationalising factor is
A A TR TN —ay Ty
and the rationsl product is &® + 5~

Ezample 1. Find the factor which will rakionslise /34,55,

1 1
Let =32, y=5%; then 2* and ¥* are both rational, and
@t —yh=(E+y) (& - by + Y - P b ayt - 1)
thus, substituting for z and y, the required factor ia
Io4 1 3 2 3 3 1.4 3
2-9%. 53+8%, 5533, S 3t 5B 58
§ 3 :E a3 1 & -3
or 32-9.5%4.87 55 15433 53 g%

5
and the rationsl productis 8- H =82 _§1-9,
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L 11
Ezampls 2. Express (5'-’ + 98) - (5'3- 93)
as en equivalent fraction with a rational denominator.

11 1
To rationslise the denominator, which is equal to 5% - 2% put 5=z,

1

4

Bi=y; then since &' —yi=(z—y) (@B+2% +zp* +3°)

. $d 31 1 3 3
the required fnctor is 5%+ 5%, 34457 .3t 84,
44

and the rational denominator is 5% 3%=3% - 3= 92,

(5% + 32) (_5_%_4—_52 . _35_-5__55 . 3§ + 3‘3)

.. the expression = il
Xp 3 g

I
2

L O S U
LRGP B2, 5% 3434
22
§ 111
14458, 345 884 5. 8
= 1L

or

+2,

1on

87. We have shewn in the Elementary Algebra, Art. 277,
how to find the square root of a binomial quadratic surd. We
may sometimes extract the square root of an expression contain-
ing more than two quadratic surds, such as e + /b + Je + S

Assume  Jfa+ S+ Jo+ Jd=Ju+ Jy+ Ju;
coad St Jer Jd=at+y i+ 2 oy + 2 JSar+ 3 Jye

Ifthen 2.Jay=b, 3 fax= ¢, 2. /5= Jd,

and i, at the same time, the values of z, y, » thus found satisfy
% + y + = =a, we shall have obtained the required root.

Exgmple. Find the square root of 21 - 4,/5-+ 8,/3 - 4,/15.
Assuma N BTN N WIS N N

591 -4 /5488 - 4/16 =+ y+5 + Ufay - W - A/yz.
Put 9, [oy =88, Lfes=4/15, 2 yz=4./5;

by multiplieation, xyz=240; thatis /oyz —415;
whenes it follows that =23, Jy=2, J2=./5.

And sinee these values saiisfy the eguation z+y 4+ 2=21, the reguired
Yoot is 2,/3+2 - /5.
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83, If Yaw fhex+ Jy, then will Ja—ox— Uy
For, by cubing, we obtain
@+ Jb=a+ 32" Jy+ ay+y Jy.
Equating rational and irrational parts, we have
@ =%+ 3zy, Jb=3z" Jy+y Jv;
La—Jb=a' = 32" Jy+ vy -y Jy;
that is, ' Ya-Jb=x- Jy.

Sirpilarly, by the help of the Binomial Theorem, Chap X111,
it may be proved that if

«/c&+,\/b=x+,,jy, then y“w“%—Jy,

where n is any positive integer.

89. By the following method the cube root of an expression
of the form a+,/b may sometimes be found. :

Suppose Ja+ Jo=a+ Jy;
then Ha—Jb=u- Jy.
e =B = e (1)

Again, as in the last article,
=2+ 3BY. e L (28).
The velues of = aad ¥ have to be determined from (1) and (2).
In (1) suppose that J/a® —5 =¢; then by substituting for y in

(2) we obtain
a=x"+ ez’ —c);

that is, 4o? — Sz =@

If from this equation the value of % can be determined by
trial, the value of y is obtained from y=2z'- ¢

Nore. We do not here sssume ,/z+./y for the cube root, ag in the
extraction of the square root; for with this rssurnption, on cubing we should

hava

a+ fb=z )z 432 fy + 8y /= + o
and since every term on the right hand side is irrational we cannot equate
retional and irrational parts.
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Lrample. Find the eube root of 72 - 323,/5.

Assume 72 -80 5=z~

then NI PEETNEET RN
By multiplication, :/ 5184 - 1024 % 5 =a* - Y3

that is, 4=~y {1).
Apain T2 - B2/5 =0 — Bt Sy + Bay - s

whenece T2= 88y e (2
From (1) and (2}, T2=x%+ 82 (2" - 4);

that is, o Bx=18.

By trial, we find that x=3; hence y=35, and the cube root is 3 — /5.

90. When the binomial whose cube root we are seeking
consists of feco quadratic surds, we proceed as follows.

Ezample, Find the cube root of 9,/3 +11,/2.
R N N L
YA = \/ 3,/3 (3 + EN/;)

 — Y
11 2
SCIVERE VS

By proceeding as in the last arbicle, we find that

3
11 2 3

VARE VERIEOVEE

. , 2

., the Tequired eunbe root  =,/3(1+ \/ 3

=3 +.4/2

91. We add a few harder examples in surds.

Ezample 1. Express with rationsal dencminator

. 4
The expression =

g8-3541
_ ez 41)
(s1){F-s051)

1
=4(::+11)=3g+1'

4
KRR
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Example 2. Find flie square root of

(Br-3+2 JRx+1) (z - 4);

- 1
The expression =1

=%{(2z+1)+(x-4}+2J@m} ;
hence, hy inspection, the square root is
ToWETLeE )
Fzample 3. Given ,/3=2230607, find the value of

_NBE
N2HNT-B B

Multiplying numerator and denominefor by £/2,

the expression = _'\/35_' 2o
2414675

EXAMPLES. VIIL a.

Expresa as equivalent fractions with rational denominator :

I 9 N2

AV ENE SEHS3- 5

3 1 " _2Warl
Ja+h+alatd Ma-1-w2a+ia+]

5 Y104y3-J3 5 (Y3+J5)(/5+42)

* T3 JI0CE : NEESNEEW/

Find a factor which will rationalise:

1 k|
7. ¥3-Jo 8. ¥5+.2 9. ai+ah
10. ¥3-). 11 2+4% 1. ¥5-—Ya
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Express with rational denominator:

'3_ 1 Y9-8 2.3
AT N NEAE
18 Y33y 14 Fors: B yargm
3,{3 .lf s [ ¥ Ll
T 17. Ef*:" ) 1. 27
NEI) N7 Y

Find the sguare root of

19, 18-2./20-2J28+2.735. 20, 244415 4./21-2,/35.
2L G- 12~ /24— /8, 22, 5 J10-,/15+,/6.

23, a+3b+a+aJa—44/30—24/3ab.

24 2143 /B-6Y3-6T— 24— J56+2.421.

Find the cube root of

95, 104643 26, 38+17.5. 2. 99-70 2.
28. 38,/14-100,/2. 20, 54./3+41./5. 3. 135./3-87.6.

Find the square root of

31 a+a+A%a 2 32, 2u—/3ai= 2ab- -
1 2
33 1+a+{1+attat)d 34 1+{1-ah) &
] 1 - 2 L
35. If azg—:—Ja, b:m, ﬁlld the value Of id +11C{b‘-‘ .l’bs.

13-/2 J3HA2 5
B . . 3
3. If z= NTNCL y‘_~ 5 ga find the value of 3% —Bxy + 3y

Find the value of
26— 15.73 EEERE
37, ———= . 38. = -
5.2~ +/381-5.73 331903

39, (28— 10,,]3}% —(7+4 Ja}":'e. 40, (26+15 .,/3)3- {26 + 15,«'3)'3.
41, (Given ./5=2'23607, find the value of
1042 J10+4J18
VIB—A3+J5 B35
Divide 22+ 1 +32 %2 by z—1+¥/2.
Find the cube rook of 9ab? + (52 + 24a?) 4/ 5% — 3a.

LS

84 Evelnate—YP =L Ghen se=nat L,
&-—afgf-1 N
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IMAGINARY QUANTITIES.

92, Although from the rule of signs it is evident that a
negative quantity cannot have a real square root, yet Imagtnary

quantities represented by symlols of the form ./ — ay o~ 1 are of
frequent occurrence in mathematical investigations, and their

use leads to valuable results. We therefore proceed to explain
in what sense such roots are to be regarded.

‘When the quantity under the radical sign is negative, we can no
longer consider the symbol ,/ as indicating a possible arithmetical
operation ; but just as /e may be defined as a symbol which cheys
the relation ,/z x /& = 0, 50 we shall define ./~ a to be such that
JZax /= a=—a, and we shall accept the meaning to which this
assumption leads us.

It will be found that this definition will enable us to bring
fmaginary quantities under the dominion of ordinary algebraical
rules, and thati through their use results may be obtained whiel,
can be relied on with as much certainty as others which depend

solely on the use of real quantities.

3. By definition, ,/=1x,/T1=-1
Ja.J:i ¥ Ja. =1 =a{~1);
that is, (Ja. J=1P=—a
_Thus the product ,/a . .,/—1 may be regarded as equivalent to
the imaginary quantity N

94. Tt will generally be found conivenient to indicate the
imaginary character of an expression by the presence of the

symbol ,/~1; thus
A= (-D=2J/7L
J=Ta =T % (- T) =a J7 J-T.

95. We shall always consider that, in the absence of any
statement to the contrary, of the signs which may be prefixed
before a radical the positive sign is to be taken. But in the use
of imaginary quantities there is one point of importance which
deserves notice. :
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Bince (—a)x(— Dby =ab,
by taking the square root, we have
Jmax J=b == Jab.
Thus in forming the product of ./~ and /=& it would appear

that either of the signs + er — might e placed before Jab.
This is not the case, for

JTaxd b= Ja. ST x4E. DT
- JaF I
= Jab.
96. Tt is usval to apply the term ‘imaginary’ to all expres-
gions which are not wholly real. Thus &+ bJ Z1 may be takén

aa the general type of all imaginary expressions. Here s and b
are real quantiites, but not necessarily rational.

97. In dealing with imaginary quantities we apply the laws
of combination which have been proved in the case of other surd
quantities.

Ezample 1. a+bJ—1lx{c+da/—lj=azc+dzdia/-1.
Example 2. The product of a+ D ,J:-f and c+d, /-1
={at+ba/—e+d S D)
=a¢ ~ b+ (Do +ad) o/ = 1.

98. Ifa+b,/ 1=0, thena=0, and b=0.

For, if a+b.J=1=0,
then I)J:lz-wa;
b =0t
g+ =0,

Now &° and b* are both positive, therefore their sum cannot
be zero unless each of them is separately zero; that is, =0,
and b=0.

99. Ifa+b/~l=c+d, /"1, thena=c andb=d

For, by transposition, a —¢ + (b —d) /- 1=0;
therefors, by the last article, a—¢=0, and b ~d = 0;
that is a=c, and b=d.
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Thus w0 order twat fwo naginary expressions may be equal it
5 necessary and sufficient that the real parts shouwld be equal, and
the tmaginary parts showld be equal.

100. DrrmNimron. When two imaginary expressions differ
only in the sign of the imaginary part they are said to be
conjugate.

Thus a—5./—1 is conjugate to @+ ./ - 1.
Bimilarly /2 + 3 J/—1 is conjugate to /2 —3,/=1.

101.  The sum and the product of fwo congugate imaginary
expressions are both real.

For a+bJ=T+a-5b/"1=2a,
Again  (a+b,/-1){e~b /1) =o'~ (=0
=a'+ 3

102. Deptwirtor.  The positive value of the square root of
& + b is called the modulus of each of the conjugate expressions

a+b/—Tanda-b,/—1.

103.  The modulus of the product of two imaginary ewpres-
sions ie equal lo the product of their moduli.

Let the two expressions be denoted by a+b./ =1 and c+d,/=1.

Then their product =ac— bd + (ad +bc) /=1, which is an
imaginary expression whose modulus

= ,j(ac - b + (ud + be)?
= JO L B+ ad + B¢
= J (@ + 5 (¢ + &)

N LY S ENCEY

which proves the proposition.

104. Tf the denominator of a fraction is of the form &+ & /-1,
it may be rationalised by multiplying the numerator and the

denominator by the conjugate expression a—5,/_ 1.
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For instance

c+d =T _(e+dJ=1)(a-b./=1)

arby=1 (a+bJ=T)@-b/-1)
_ac+bd+ (ad— b}/ 1

- & + b

_ac+bd ad be

a” +b’ E+E J- .

Thus by reference to Art. 97, we see that the sum, difference,
product, and quotient of two imaginery expressions is in each case
an tmaginary expression of the same form.

105, To find the square root of a+ b /= 1.
Assume JarbyTl=2+y¥T1,

where  and » are real quantities,

By squaring, a+5,/—1 —a~2%+ 22y, /= 1;
therefore, by equating real and imaginary parts,

- m@ {1},
oy =8 e (2);
- (P ) = (@ - Ty
=g+ b
LEtry = AR, (3).

From (1} and (3), we obtain

2 - 2
FTT 4 a)b FiF—al}
H{ﬁ_g_w} ,yu{«/“ t7 “}

Thus the required root is obtained.

Since x and y are real quaniities, £+ y* is positive, and therefora in (3)

the positive sign must be prefized before the guantity ,/a? 4 L-"

Also from (2) we see that the product zy musi have the same sign as b;
henee z and y must have like gigns if & 18 pozitive, and unlike signe if § is
negative.



78 HIGHER ALGEBRA.

Ezample 1. Find the square root of — 724,/ = 1.

Assume .J T4,/ 1_x+_/,,/ 1:
then _7-o4, T I=a -y 2y - 1;
Syt = T 1
and 2ry = — 24,
(@ = (et - ) ()
=44+ 576
=625,
B EEEDE e e {2
From (1) and (2}, =9 and y*=16; .
S E=kS, =24
Bince the product zy is negative, we must take
=3, y=-4; orx=-3, y=4.

Thus the roots are 3-4,/-1 and ~3+4./-1;

that is, NI YR e i S e 1)
Ezample 2. To find the value of A/~ 63u,
i/ = 64a4=J¢84’~/j
=2a~/§~/ﬂ=~/j-.
It remains to find the valuc of &/ =,/ =1,
Asgume g N l=z+y/—1;
then taf - I=atmyd 420y /=1

&t y?=0 and 2zy =1;

whence z=“—j{l§, y=~%; orz=—~712, . ;_:;'ﬁ;
R Vs 1~i——{1+J 0.
Similarly J-J 1= 7 {1 )

SN EEF LB

and figally J—Géa‘:a;h{liJ-l)_
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106. The symbol ./ = 1 is often represented by the letter i: but
until the student has had a little practice in the use of imaginary

quantities he will find it easier to retain the symbol ./~ 1. Itis
useful to notice the successive powers of ./~ 1 ord; thus

=Ty =1, =1

W-1y=-1, =1
W=l Pei;
VASSVIEDS it 1

and since each power is obtained by multiplying the one before it
by /=1, or 4, we see that the results must now recur.

107. 'We shall now investigate the properties of certain imagi-
nary quantities which are of very frequent oceurrence.

Suppose = 1; thena’=]l, ora®—1=0;

that is, (-1 (2" +2+1)=10.
. either wx—-l=0,0rf+x+1=0;
whence =1, or m:ll—i‘;"’—/—-*—s.

It may be shewn by actual involution that each of these
values when cubed is equal to unity. Thus unity has three cube
roots,

1

H 3

-1+/-3 -1-/-3
e e e
two of which are imaginary expressions.

Let us denote these by e and 8 ; then since they are the roots
of the equation
Pra+l=0,
their product is equal to unity ;

that is, af=1;
o af ol
that s, B =0® sincea®s=1

Similarly we may shew that o = 8%

108. Since each of the imaginary roots is the square of the
other, it is usual to denote the three cube roots of unity by 1, w, .
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Also o satisfies the equation 2’ +x+1=0;
o lrow+a®=0;
that is, the sum of the three cube roots of unity <y zeve.

Again, w.wle=o’=1;

therefore (L) the product of the two imaginary rools ts wnity ;
(2) every integral power of ©° is unity.

109. Tt is useful to notice that the successive positive
integral powers of w are 1, w, and o'; for, if #» be a multiple of 3,
it must be of the form 3m; and *=o™"=1,

If » be not & multiple of 3, it must be of the form 3m + 1 or
3m + 2,

It n=3m-+1, w' =0 =™ o=

If n=3m+ 2, o' =w® = o, of = o

110, We now see that every quantity has three cube roots,
two of which are imaginary. For the cube roots of a® are those
of ¢*x 1, and therefore are a, aw, qw’. Similarly the cube roots
of 3 are /9, 0 9, o® ¥9, where 39 is the cube rost found by the

ordinary arithmetical rule. In future, unless otherwise stated,
the symbol e will always be taken to denote the avithmetical
cnhe root of a.
(243,10
244/ -1
The expression _4-9+12 4-9+12 /-1
T e+ /-1
_{-5+12/ - /-1
@+ 1@
_ ~10+12429 /71

Ezample 1. Reduee to the form 4 + 5,/ "1.

441
2 29 ,—
-—-5'}“5- -1;

which Is of the regnired form.
Ezample 2. Resolve 5%+ 38 into three Factors of the first deyree.
Since DAyr=(w+y) (2* - 2y + Y

2 yi=(B4y) (o 4 oy) (24 0);
for wtw= -1 and wi=1.
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Ezawple 3. Shew that
{4 wh o+ o) (et W +we) ma? + 8% 6% = bo ~ ca - ud.
In the product of 4wl 4+ w'c and ¢ +a'l 4 we,
the coeificients of b* and ¢ are o, or 1;
the coefficient of b =t wi=wltw=-1;
the coefficients of ¢z and ab=u+w= -1,
(T ol w%) (¢L+w2b+wc) @202 et - Do —ca —ab,
Example 4. Shew that
I+w—e9¥~{l-ws+wp=0.
Sinee 1+ +w?=0, we have
G two-oP-(-wt TP (- 2P - (- 2a)
= — 8ub 5 Bw?
= -H4+8
:'-0-

EXAMPLES. VIIL b,

Multiply 24/ — 34342 by 44/ —3-54/-2.
2. Multiply 35/ ~7 -5+ =2 by 34/ -T+54/ =%
3. Multiply gv"*_l.g.,g-w"—_l by Nl - fl‘i’
+J 3byx 1-4/=3

4. Muli:dp]ya,— — i

Express with ratioual denominator:

5 1 6 34 -2+24 -5

T oa-T2 R YA DYy
34+824/-1 32471 ata—1 a—zd—1

1. —e: —-. 8 sen — = .
2-85a/<1 2484 ~1 a-xy/ -1 atas/ -1

g @EV-1P (o1 o et/ ST o(ao /ST

Y s VNS (@t N =1 (o~ 1y

11. Find the value of (— 4/ — 1)1%*3, when » is a positive integer.
12. Tind the aquare of /94404 1 +./9 404/ 1.
. H. A. 6
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Find the square root of

13. -5+124/ "5 14 -11-604 1. 15 —474+84/ -5
16, -84/ —1 17, «@-1+2ay/ -1

18, dab-2(a®- b9/ L

Express in the form A+<5

345¢ R TN 147
19- 2___3}:- 20. 27“_3_?’&;2 . 21. i"‘_"} -
AR Y A
gg (+9F g3, (af®f (@a—iy
3-¢ a—ib a4 1h

1f 1, @, »? are the three cube roots of unity, prove
28 (1+odt=a, 25, (l-otod)(ite—o?)=4
26, (1~w) (1 -oB{l—o%){l-o=9
27, (2450 +20)0= (24 2w+ 507 =728,
2 (I-ow+e?(l-e?+of)(l-w'+aed). to 2 factors =22
29, Prove that

Byt + 2 - Bayz={x+y+2) (@ yu + 2%} (£ +Fol+sw)
30, If r=a+d, y=ao+bo?, z=ae’+da,

shew that
(1) ayz=a®+b%
(2} a?+yi+ef=06ad
(3) P+ +S=3(al+ 1)
3L If artey+be=2X, cr+bytaz=7, botay+a=24

shew that (a?+ 3+ —De—oe—ab) (22432 + 28— yz — 22 — 2y)
=+ ¥+ Z2-YZ-XNZ-AT.



CHAPTER IX.
THE THEORY OF QUADRATIC EQUATIONS.

111, ApvER suitable reduction every quadratic equation may
be written in the form
ar+be+e=0 ... (1,

and the solution of the equation is

- 2
= Qg e {2).

We shall now prove some hnportant propositions connected
with the roots and coefficients of all equations of which (1) is

the type.

112, A quadratic equation cannot have more than two roots.

For, if possible, let the equation wa®+bs+ec=0 have three
different voots a, 8, y. Then since each of these values must
satisfy the equation, we have

ga’+bede=0 .. ..., (1),
e +8B+e=0 ... (2),
ey’ +by+e=0 . {8

From (1) and {2}, by subtraction,

a{a’ -3} +b(a~F)=0;
divide out by a — 8 which, by hypothesis, is not zero ; then

alo+B)y+b=0.
Bimilarly from {2} and (3)
a{f+y+8=0;
.. by subtraction ala-v)=0;

which is impossible, since, by hypothesis, a is not zero, and o is
not equal to y. Hence there cannot be three different roots.

6—2
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113, TIn Art 111 let the two roots in {3} be denoted hy & and
B3, so that
~b+,/b°—4dac
e .
then we have the following results:

(1) If 2°- dae (the quantity under the radical) is positive,
o and 3 are real and unequal.

(2) If 3 -4ec is zero, & and B are real and equal, each

—bo B dac

&= 2a ’

reducing in this case to — ‘)i .
A 4

(3) If ¥ —dacisnegative, a and 8 are imnaginary and unequal.
{4) 1f - 4ac is a perfect square, & and 8 are rational and
unequal. .
By applying these tests the nature of the roots of any
quadratic may be determined without solving the equation.
Zrample 1. Shew that the eguation 22°-62+7=0 cannot be satisfied
by any real values of z.
Here a=2, b= -0, c=17; so that
W dgo=(-B)P=4.2.7=-20.
Therefore the roots are imaginary.
Example 2. If the equation 2+ 2 (k+ 2} = + 9% =0 has equal roots, find k.
The condition for equal roots gives
(k+2P="0%
K - Bk 4=,
(k~1) (k-1)=0;
oo k=d,0r L
Ezample 3. Shew that the roots of the equation
22— 2pr+pi-gt+2gr-11=0
are Tational.
The roots will be rational provided (-2p)?—4(p*-g*+2gr-72) ia a
perfect sguare, Buf this expression reduces to 4 (g%~ 2gr +13), or 4 (g—n).
Hence the roote are rational.

~ b+ /B —dac

114, Bince a= o = 50

we have by addition

Q+B:—b+_Jb —dac —b - 6 ~4ae
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and by multiplication we have

g b+ JB—da) (b= /i~ dao)
T v
(B - (87 - 4a)
T e T
e SOOI NT @)

By writing the equation in the form
b @
2+ —w+=-=0,
a6 @

these results may also be expressed as follows.

In a quadratic equation where the coefficient of the first term s
wRALY, '

(1) the sum of the roots is equal to the coeficient of = with
its sign changed ;

(i} the product of the roots is equal to the third term.

Nore. In any equation the term which does pot contain the unimown
guantity is frequently called the absolute term.

. b e
115, = T=
15. Bince 2 e+ f3, and pe af3,

the equation x*+ % &+ Z ={ may be written

g —(e+Bx+af=0 ..o (1.

Hence any quadratic may also be expressed in the form

z' — (sum of roots}x + product of roots=0......... (2).
Again, from (1} we have
w-—a)(m=B)=0 ... (3).

We may now easily form an equation with given roots.

Ezample 1. Form the equation whose roots are 3 and -2,
The equation is fx-8){z+2)=0,
or ¥ x-B=0.
‘When the roots are irrational it is easier to use the following

method.
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Erample 2. Form the equation whose roots are 2+ ./3 and 2 -,/3,

We have sum of roote =4,
product of roots=1;
.'. the equation is 32~ 4x+1=0,

by using f(_)rmula. (2) of the present article.
116. By a2 method analogous to that used in Example 1 of

the last article we can form an equation with three or more given
roots.

Exzample 1, TForm the equation whose roots are 2, - 3, and ; .

The required equation must be satisfied by each of the following sup-
positiona:
z—-2=0, 4+3=0, x—g:o;

therefore the equation must be
{z—2) (z+3) (x—g) ={;
thab is, (z-2){=+38) {6z -T}=0,
or Su?—22° _ 3Tr+42=0.
Ezample 3. Form the equation whose roots are §, *a, g .

The equation has to be satisfied by
c
z=f, =8, 2= —a, Tz

therafore it is
= (% +a} (z~ a} (a:—g) =0;

that ig, & (23 - a?) (bx — ) =0,
or batd — o - alz? + glexr=0.

117, The results of Art. 114 are most important, and they
are generally sufficient to solve problems connected with the
roots of guadratics. In such questions Zhe roots should never be
considered singly, but uwse should be made of the relations ob-
tained by writing down the sum of the roots, and their product,
in terms of the coefficients of the equation.

Ezample 1. If 2 and 8 sre the roois of 22— pe+g=0, find the value of
(1) a2+ B (2) o3+ 85
We have at+f=yp,
af=4q.
. et P ={a+ B8P - 2af
=p?—2q.
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Again, a?+B=(a+p) (o’ + 8 — aff)
=p {{a+p)*~3af]
=p (p*- 3}
Ezample 2. If a, B are the roots of the equation Ix* 4 mz + 1 =0, find the
equation whose roots areg , ‘f .
Wo have sum of roots =5 + # = il o s
8 a af
L
prodoet of roots= 3 a-l )

. by Art, 115 the required equation is
. 248
I — (a—“pi) z+1=0,

or af? - (0 + 8% 2+ aB=0.
. m3—2nl n
Ag in the last example o? £ §2= —F and af= 7
.. n ., m=2nl =n

.*. the equation is 8- —g % _Lzo’
or nig® — (m® - 2al) z4-0l=0,

Erample 3. When x=3—+;¢' , Bnd the value of 223 + 205 - T+ 72 ;
and shew that it will be ualtered it 272N "1 bo gubstituted for z.

Form the quadratic eguation whose roots are 3—%2%/-—-1 ;
the sum of the roots =3:
the preduct of the roois = ];27 s
hence the equation is 2% — Gz 17 =20
oo 227~ 82417 is a qoadratic szpression which venishes for either of the
values 3-—%—;'—‘-;/:—1 -

How 2284862 -Te4-T2=x (203~ 617} + 4 (227 - e+ 17) + 4
—rx0+4dxlird
=d

which is the numerical value of ths expression in each of the supposed cases.
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118. 7o find the condition that the vools of the equation
ax’ +bx + e=0 should be (1) equal in magnitude and opposite
w sign, {2} reciprocals,

The roots will be equal in magnitude and opposite in sign if
their suw is zero; hence the required condition is

hézo, or b=0.
@

Again, the reots will Le reciprocals when their product is
unity ; hence we must have

The first of these results is of frequent occurrence in Analyti-
cal Geometry, and the second is a particular case of a more
general condition applicable to equations of any degree.

Ezample. Find the condition that the roots of a#*+ bz +¢=0 may be (1)
both positive, (2) opposite in sign, but the greater of them negative.

b c

Wa have atf=-—, “ﬁ=&'

[ILkif the roots are both positive, af i3 positive, and therefore ¢ and o
bave like signs.

Also, elnce « -+ £ is positive, 'f: is megative; therefors b and a have unlike
signe,

Hence the required condition js that the signg of & and ¢ should be like,
and opposite to the sign of b.

{2) If the roots are of opposite signs, af is negative, and therefors ¢ and
« have nnlike gigns,

A;;BO since « + 8 has the sign of the greater root it is negative, and thers-
fore : is positive; therefore b and q have like signs.

Hence the required condition ie thai the signs of « and b should be Lke,
and opposibe to the sign of .

EXAMPLES. IX. a.

Form the equations whose roots ave

L -}f 3 g, M7 3 2o _Ptg
i % L pt+a p-g

4. 7T+2 .5 5. +2./3-5 6. -p+2Vig
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8 -—a+ib 9, +i(a-b

7. —~3+5:
12, 2+./3, 4.

f~ ]

10 -3 g oo 5,0 ~
13.  Prove that the roots of the following equations are real:
(1) 2=2ap-tad--=0,
{2) (a-bte)a?+2{a-Br+{a-b-c)=0.
14, If the equation 2%— 15— 2 (2% —8)=0 has equul roots, find the
values of m,

15. For what values of s will the equation
a® =27 (1430)+ 7 (34 2m) =0

bave equal roots.?
16. For what value of m will the equation
PBeby m—1
az-¢ m+l
have roots equal in magnitude but opposite in sign ¥
17. Prove that the roota of the following equations are rational:
(1) {a+e—b)a"+2%x+(b+o-a)=0,
(2) abels® + Baer+ Bew —Ba® — ab +262=0.

If a, B are the roots of the equation as?+ x4 ¢=0, find the values of
1,5 A7 1. o7 2 _g)g
18, ot 18, tg+alg 20, (ﬂ 8.

Find the value of
B4 2% -24+22 when z=1+ 24,

21,
99 %~ 3rl-8r+15 when x=3-1.
28. 2% — az®42lr + 4¢® when E: 1-- .J -3

24 If 2 aud B are the roots of 224 pxr+¢=0, form the equation
whose roots are {a - 8)2 and (e +58)%

25, Prove that the rovts of (z—a}{z— b) =42 are always real.

26. If 2y, 2y are the vooty of aa®+bar+¢=0, find the value of
{ar+ )24 (ar, +0)7 3,

n
fay + D)3+ {awry + D)5

(2)
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97. Find the condition that one root of ax®4dxr+c=0 shall be
2 tines the other.

28, If g, B are the roots of wa¥ + by +¢=0, forn the equation whose
roots are a®+A% and a~2-+ 82

29, Form the equation whose roots are the squares of the sum and
of the diffevence of the roots of
25% 4 2 (m4n) z+mi4+ =0,

30. Discuss the signs of the roots of the eqiation
prttgr+r=0.

119, The following example illustrates a useful application
of the results proved in Art, 113.

Ezample. If z is a 1eal quantity, prove that the expression fél:%]l_l
cun have all numericsl values except such as lie between. 2 snd 6.

Let the given expression be represented by ¥, so that
42— .
2{z-8) 7
then multiplyiog up and transposing, we have
22422 (1 —y) + 6y — 13=0.

This is & quadratic eguation, and in order that x may have real values
4(1—9)*~ 46y —11) must be positive; or dividing by 4 and simplifying,
y* - 8y + 12 must be positive; that is, (y — €) {y — 2) must be positive. Hance
the faciore of this produet must be both positive, or both negative. In the

former case y Is greater than 6; in the latter ¢ is less than 2. Therefore
4y cannot lis between 2 and 6, but may have any other valne.

In this example it will be noticed that the quadratic expression
% — By + 12 is positive so long as y does not lie between the roots
of the corresponding quadratic equation y* -8y +12=0.

This is a particular case of the general proposition investigated
in the next article.

120. For all real values of % the expression ax®+bx +¢ las
the same sign as a, aeoept when the roots of the equation ax®+bx +c=0
are real and unequal, and x has @ value lying between them.

Case I.  Suppose that the roots of the equation
ax’+brte=0
are real ; denote them by a and 8, and let a be the greater.
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Then cm“+bx+c=q(m’+%:r.+f)

=ai{t’ —(a+ B)m+af}
= a(z-a) (e f)

Now if = is greater than o, the factors x— e, z— 8 are both
positive ; and if x is less than 8, the factors x —a, 2 — R are both
negative ; therefore in each case the expression (z—a)(x—f) is
positive, and aa®+ bz + ¢ has the same sign asa. But if x haga
value lying between e and B, the expression (x-o){x-pf) Is
negative, and the sign of ax” + b + ¢ is apposite to that of a.

CaseIl. If e and £ are e(';ual, then
ax’ + bt e=a(x—a)’,
and (x - a)’ is positive for all real values of = ; hence ax®+ b + ¢

bas the same sign 2s a.

Case IIL Suppose that the equation ax®+bx+c=0 has
imaginary roots; then

ax’+bx+c=a{x!+éa:+f}
o @

—a {(x AN iy
- 20 it [
But »* — 4ac is negative since the rocts are imaginary ; hence

dac—b° . . .
aza,-- is positive, and the expression

+__Zl)’+4a,c-—b’
(a: 2, 4q*

A

is positive for all real values of x; therefore ax® + bx + ¢ has the
same sign as @, This establishes the proposition.

121, From the preceding article it follows that the expression
aa® + bz + ¢ will always have the same sign whatever real value
may have, provided that 5 — 4ue is negative or zero; and i this
condition is satistied the expression is positive or negative accord-
ing as 4 is positive or negative,

Conversely, in order that the expression «a’+ bz + ¢ may be
always positive, * — 4ac must be negative or zero, and « must be
positive ; and in order that o + bu + ¢ may be always negative
&* — 4ac must be negative or zero, and & must be negative.
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Ezample. Find the limits between which a musé lie in order that

axt-Tot3
55— Tr+a
may be capable of all values, z being any real guantity.
ari—Te+5
Put = Pl
then {n-8y)a® - Te{l-y)+{5-ay}=0.

Iy order that the values of » found from this quadratic may be real, the

expreasion
49 (1 ~ )% - 4{a - 5y} (5 — ay) must be positive,

that in, (49 -20a) 4%+ 2 (202 + 1) y + {49 — 20a) must be positive;
hence (2224 1)2 - (40 - 20a)° must be megative or zero, and 49 - 20« wmust be
positive.
Now (202 + 1)® - (49 — 20a)® is negative or zero, according as
2 (a*— 10a +25) = 2 {(a* 4 10a — 24) ia negative or zero;
that is, according as 4 (g —8)? (¢ + 12} {a - 2) is negative or zero.

This expression is negative as long a3 a lies between 2 and 12, snd for
sach valnes 49 — 20a is positive; the expression is zero whena=45, — 12, or 2,
bnf 49 - 202 is negative when 2=>5. Hence the limiting values are 2 and
—12, and & may bave any intermediate value.

EXAMPLES, IX. b

1. Determine the limits hetween whick n must lie in order that
the equation
ez (ax+nc)+(n? - 2) =0

may have real roots.

x . 1
2. If x bereal, prove that ey must Ye between 1 and - e

3. BShew that #-rtl lies between 3 and 1 for all real values of x
’ #2rz+l 3 )
) 2%+ 345 =71
4, If xbe real, prove that iy e sl have no value between
5 and 9.
5. Tind the equation whose ronts are -*A"r—a“__.-_—" .
) Jetaa-b

6. Ifq B are roots of the equation #2— pe+¢=0, find the value of
(1) a8 - 8)+p (8% - a),
@ (o—p)*+B-p)*
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7. If the raots of Lx?+ ne4+n=0bhe in the ratio of p : ¢, prove that

e g
£y 14 [Z=0
\/9 P {

(x4 mp — dmn

STz —n) admits of all values

8. If » be real, the expression
except such as lie between 2n and 2m,

9, If the reots of the equation aa?+%bz-+c=0 be a and 8, and
those of the equation A:*+2Br+ =0 be a+3and 8+ 8, prove that

10. Shew that the expression m will be capable of all

values when x is real, provided that p Les any value between 1 and 7.

=432
22 3r+6

12, Shew that if x is real, the expression
{(2-ba)(2r—b—e)-1
has no real values between™d and e.

13, If the roots of as®+2bx+¢=0 be possible and different, then
tha roots of

11. Find the greatest value of .~ for real values of #.

{e+c) (@ + 2bx + ¢} =2 (ac— &) (2% + 1)
will be impossible, and vice versd.

14, Shew that the expression E:ﬁ 2 Edr :3 will be capable of all

values when = is real, if #* - 2 and ¢® — d® have the same sign.

*]22, "We shall conelude this chapter with some miscellaneous
theorems and examples. It will be convenient here to introduce
a phraseology and notation which the student will frequently
meet with in his mathematical reading.

Derwrtion. Any expression which involves x, and whose
value is dependent on that of =, is called a fometion of =
Punctions of z are usually denoted by symbols of the form (=),
F{a), ¢ (=)

Thus the equatior ¥ =j (2} may be considered az equivalent
to @ statement that any change made in the value of x will pro-
duce 2 consequent change in y, and vice versd. The quantities &
and y are called variables, and are further distingnished as the
independent variable and the dependent wariable.
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An dndependent variable is a quantity which may have any
value we choose to assign to i, and the corresponding dependent
variable has its value determined as soon as the value of the inde-
pendent variable is known,

*123.  An expression of the form
PP pE Tk p, @ p,
where n i @ positive integer, and the coefficients p,, »,, p,,...p_ do
not involve &, is called a rational and integral algebraical function
of x. In the present chapter we shall contine onr attention to
functions of this kind.

*124. A funetion is sajd to be linear when it contains no
higher power of the variable than the first ; thus ez + 5 is a linear
function of = A function is said to be quadratic when it
contains no higher power of the variable than the second ; thus
ax? + br+¢ is & quadratic function of @ Functions of the third,
Jourth,... degrees are those in which the highest power of the
variable is respectively the fhird, jowrth,.... Thus in the last
article the expression is a function of # of the n*® degree.

*125. The symbol f(#, y)is used to denote a function of two
variables z and ¥ ; thus aw+dy + ¢, and ax’™+ by + ey’ + dw + ey + F
are respectively linear and quadratic funetions of #, g.

The eguations f(x)= 0, f(z, )= 0 are said to be linear, quad-
ratic,... according asthe functions f{w), /' (=, y) are linear, quad-
ratic,....

*¥126. We have proved in Art. 120 that the expression
ax®+bz+c admits of being put in the form a(zx~a)(z - B),
where o and £ are the roots of the equation ea®+ bz + o = 0,

Thus a quadratic expression aa’+ba+c is capable of being
resolved into two rational factors of the first degree, whenever
the equation a2®+ bxr+¢=0 has rational roots; that iz, when
8" — fac is a perfect square.

*197.  To find the condition that a quadratic function of x, ¥
may be resolved into two linear foctors,

Denote the function by f(z, ¥} where
Sz y) = ac® + 2y + by + g+ Ay + e
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Write this in descending powers of z, and equate it to zero;
thus ’
ax’ + 2 {hy + gy + 87 + Yy + o= 0.

Solving this quadratic in  we have

we— Py +a) = hy + g @y + 3y + o)
@ 3

or  ax+hy+g==.Jif (- ab)¥ Iy (hg—af) + (5" = ac).

Now in order that f{z, ¥} may be the product of two linear
factors of the form pwx+ ¢y + 7, the quantity under the radieal
must be a perfect square ; hence

(hg — af Y = (W — ab) (¢" —ac)
Transposing and dividing by a, we obtain
abe + 3fgh —af* — bg® — eh® =0 ;
which is the condition required,

This proposition is of great importance in Anatytical Geowmetry.

¥128. To find the condition that the equations
ax’+br+e=0, ¢+ e+ =0
may have & common root.
Suppose these equations are both satistied by z~a; then
aa® + be+ ¢ = 0Q,
'+ la+d =0

.~. by cross multiplication

-3
o a 1

b’ —be ed —ca b —ab’

Te eliminate a, squave the second of these equal ratios and
equate it to the product of the other twe; thus

a® af i
(= tay = GV (o —aE)
o {ed’ — da) - (be' ~b'e) (ab — a'BY,
which is the condition required.

Tt is easy to prove that this is the condition that the two
quadratie funetions ax® + boy + ¢y and a'%® + Fay + ¢y may have
a common lincar factor.
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*EXAMPLES. IX. ¢

1, For what values of m will the expression
¥+ 2xy+ 2 -Fmy -3
be capable of resolution into two rational factors ?

2. Find the values of m which will make 2% + may + 3%~ 5y - 2
equivalent to the product of two linear factors,

3. BShew that the expression
A (2 —g) -y (B~ C)
always admits of two real linear fastors.
4, If the equations
B4 px+g=0, 2t p'rtg =0
have & comraon root, shew that it muost be either
p-ry or i=¢ .
9-¢ ~ p-p
5. Find the condition that the expressions
e may+ny?, L2+ miey+nyt
may have a common linear factor.
6. If the expression
3224 2Pzy + 2%+ Bax — dy+ 1

can be resolved into linear factors, prove that / must be one of the
roots of the equation P2+ 40l +2a2+€=0.

7. TFind the condition that the sxpressions
ar®+2hay +by?, @224 2y byt
may be respectively divieihle by factors of the form y—ma, my -2
8, Shew that in the equation
2 — 8oy + 2P — 20— 3y —B85=:0,
for every real value of z there is & real value of g, and for every real
value of i there is a real value of a.
9. Tfxand g are two real quantities connected by the equation
92+ 2oy + 3% — 92 — 20y + 244 =0,
then will z lie between 3 and 6, and y between 1 and 10.

10, If {aff+br+o)y+a’at+ e+ =0, find the condition that =
roay be a rational function of g.



CHAPTER X.
MISCELLANEQUS EQUATIONS.

129, In this chapter we propose to consider some mis-
cellaneous equations; 1t will be seen that many of these can be
solved by the ordinary rules for quadratic equations, but others
require some special artifice for their soluticn.

2 x
Ezample 1. Solve Ba® - B 53,
3
Multiply by 22 and trangpose; thos
¥

2
8™ - 632M . § = 0);
a
—8) (8231 1)=0

2

1
=8, or - 3

.2_3:

T=2" or 2},‘.

Ezample 2. Bolve 2‘\/ +3\/ =-+..
Let \/-_.y,then\/ _._;

Ruby? ~ Gaty - ¥y +3ab=0;
(Z2ay - b} (by - 3a) =

that is, x'_’;ﬁ‘or—b‘—'

H H A 7



98 HIGHER ALGEBRRA.

Example 3. Solve {x-5)}{z—T]{z+6) (x+4)=504
We have {x?—x— 20) (% -2 - 42)=504;
which, being arranged as a quadratic in £% -, gives
{2~ 2)7— 62 {27 —x) + 386 =10;
o (e -2~ 6) (bt — - 56) =03
s at-x-6=0, or -z~ 56=0;

whenea r=3, -2, 8, -T.

130. Any equation which car be thrown into the form
as’ + bm+c+pJam=g
may be solved as follows, Putting y= Jax+ bz + ¢, we obtain
¥ +py—q=0.
Let a and 8 be the roots of thiz equation, so that
JaF T hr T oma, e T Rt =

from these equations we shall obtain four values of w.

When no sign is prefixed to a radical it is usnally understood
that it is to be taken as positive; hence, if a and 2 are both
positive, all the four values of x satisfy the original equation,
If however « or 8 18 negative, the roots found from the resulting
gquadratic will satisfy the equation

wf +br+e—pijet +brn v e=g,
but not the original equation. '

Egzample. Solve z*-5x+2 JEE bz +3=12

Add 3 to each gide ; then

22~ 5x+8+2 /8- bz +r3=15.

Patting /=7 - 5z + 8=y, we obtain y?+ 2y - 15=0; whence y=3or — 5.

Thus /2" - 5z+ 8= +35, or - Ez£3= - 5.

Squaring, srd solving the resulting quadratics, we obtain from the first
5*;&13 . The first pair of valnes
satiafies the given equation, but the second pair saiisfics the equation

2t Be-2 JoF—bz+3=12,

=6 or —1; and from the second z=
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131. Before clearing an squation of radicals it is advisable
to examine whether any common factor can be removed by
division.

Ezample. Soive /¥ —Tax +10a7 — /2% + a2z~ Ba =z - 2a.
We have

z=Ba) (x-5a) - #/(x - 2a) @+ Ba)=z - 2a.
The factor /z— 2z can now be removed from every term;
v AT WJriBaz= Jr-2a;
z—ba+x+3a—2.f(x-b5a) (z+8a)=x—2a;
s=2./7 — 2az — 15a%;
8z - Bar - B0a®=0;
(£ - Ga) {8z 4 10a}=0;
r=6a, or -—]%.
Also by eguating to zero the factor ./z - 22, we obtain z==24«.
On {rial it v;iélabe found that z=864 does not saiisfy the eqoation: thim

the roota are 5 and 2g.

The student may compare a siwzilar question discussed in the Elementary
Algebra, Art, 281,

132. The following artifice is sometimes useful,

Ezxample. Solve /3~ 4z 585+ /o —d2-11=9 ._....co e .
We have {dentically

(Ba® ~ 4z 4+ 34)— (3z* —dar— INy=45 ... {2).
Divide esch member of {2) by the corresponding member of (1); thus

B3R dr 484 B - - 11=3 . ... (3.
Now (2] is an identical equation true for il values of =, whereas (1) is an
equation which iy frae only for certain values of =; hence also equation (3}
is only true for these values of 2,
From (1) and (3) by addition

,\;30:’—4::{-34:7;

whence =3, or —;.
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133. The solution of an equation of the form
aw' b’ = cxtx b+ =10,
in which the coefficients of terms equidistant from the beginning
and end are equal, can be made fo depend on the solution of a
quadratic. Eguations of this type are known as reciprocal equa-
tions, and are so named because they are not altered when = is

— X 1
changed into its reciprocal 2

For a more complete discussion of reciprocal equations the
student is referred to Arts. 568—570.

Ezample. Solve 13a4 - 5623+ 89x° - 56z +12=0.
Dividing by =® and rearranging,

12 (ze+i,,) _ 56 (x#) +89=0;
- el S

Fui .::+E=z; th&nz9+1-=z9—2;
x x?
o 12(22 - 8) — 56z +99=0;
whence we obtain zzg,gr-ls—g_
- wii=d ol
e TR
. . 132
By solving thess equations we find that »=2, 333"

134, The following equation though not reciprocal may be
solved in a similar manner.

Ezample. Solve Brt — 2523 4 1222 4 282+ B=0.

Wa have B("-{-l)—?..ﬁ( —1)+12=0;
(i

&£

whenoa

whenes we cbtain =2, -=, 3, ~ %

135. When one root of a quadratie equation is obvious by
inspection, the other rooct may often be readily obtained by
making use of the properties of the roots of quadratic equations
proved in Art. 114, '
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Ezample. Solve (1-a% {z+a} - 2a(l-)=0.
This i & quadratic, one of whose roots is clearly a.
Also, since the equation may be written
2az+(l-ajx—a{l +a¥=0,

T . 1pgs
ihe product of the roots is ~ 1—'!-2'1 ; and therefore the other root is — ;:' .

EXAMPLFES. X a.

[When any of the roots satisfy @ modified form of the equation, the student
should examine the particular arrangement of the signs of the radicals to which
each solution applies.}

Solve the following equations :

1. z-%-2z1=8 2. Oz =100
1 g1 1
3. 2J/w+2 i=5. 4 tri=Tsi-2r %
2 1 1
5. a"+6=5s% 6. x" 2=0.
3 i " |
7. "’\/E”\/?T“Qg-’f' 8 1 \/ =2}
X s
9. BJr=35x ¥-13. T 10, 14854053 =0
1i. 3%=49=10.3% 12, 5(5%4+5 %) =26.
13, 9%+34.1=32. 9=, 14, 28r+3_57—65 (25—
3 iz
15. S R LM
ey J2 2. 18, T E R

17. {(z—7)(x—3)(z+5) (x+1)=1680,
18. (249} (x—3) (z -7} (s+5)=385.
19. 7 (@e+1){(z-2)(2z-3)=

20, (2z-7) {22 -9) (% +5)=9L

2. 22+2JF+6r=24—6z

22, 32— dr+ . /EZE—4r-6=18.
321 -7 +3 /35~ 165+ 91 =16x.
849 /(B 9)=2s2- T

Sx— _ 1y
=gt

§ R B
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1 _Bot ] 2
g8, 7y NIF_BoH] (%: +¢.r) .

&

27. JArT Tz~ 15— .2 —3x=Jx -9.

98, 9B 9zt 44342 —1=,/27F 131z 11.

28, JePibr—T+ 3 (F—Tr+6)—JT2E—6z—1=0.

30, Jat ¥ iar - 32— JaTt aw - 628 = \f2ad+ dow — 97

31, V2P +Br 8- 2% 5r—-0=1.

20, JIF b+ 3 Sr—di=13.

33, R -Trdl- 2 -%r+d=1.

M SR Tr-30- /e Tr-b= z—5.

35, A4baf -4y o 1=0.

38. x*+§x2+1=3r?+ar. 37 AH1-3(F+a) =22

38, 10 (a*41)—63% (22— 1) + 520%=0.

39, 'H-m—x .,;’a+1 40, a+2:;+./a2 4@2 5..-':'
z— J12a —z Va1 at+2r— . Jat—

F+ o1 NP1 =
41 — — Z - —fAx . o 3w+ 2.
F-AJFB1 wfFE]

BN =
42 «fxz+x+j;“x=g. 8. S +\/6

9. ae—g : 1, 46. a®¥(@+1)=({a*+a%)a.
" 8\ /25 J3-T 7 18(72-3) 250./3x+1
© 32-T &-5 T 2%+l 3. /75~B

48, (a+x}§+4{a—x)§=5 (a"—x’j%.

Nattar—1— f@rbr—~1=,/a-./b.
50, &4 ofad 5= JB~1
R +

T— ,J:oi 1 z+J/81 .
Bl #*— 2584 2=380. 52 278 +2124+8=0,

=08,
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136. 'We shall now discuss some simultaneous eguations of
two unknown quantities.

Ezample 1. Solve z+2+y+3+,/{z+2) (¥ +3)=39.
(=+2)+H{y+8) +{z + 2} {y +3)=T4L.
Poi 2+ 2=wu, and y+3=v; then

u+v+JtTv=39......................,.......,,.(1},
W+t rur=741.. ... {20,
hence, from (1) and (2), we obtain by division,
udn - Jw.‘z;=19(3)
From (1) and (3}, u+v=29;
and Jur=10,
or ur =100;
whence u=25, or 4; v=4, or 25;
thus z=23, ox 2; y=1, or 22. _
Ezample 2. Bolve Teyd=82 1),
T =2 v {2)
Put r=u+v,and y=u-v;
than froro (2} we obiain v=1.

Substitating in (1}, (1P 4 (- 1)*=82;
<2 (ut But+1)=82;
td 4+ 6u? - 40=0;

whence u*=4, or —10;
and u=::2 or £,/=10.
Thus z=8, ~1,1&,/-10;

y=1, —3, -1+./-10.

ety z-y

Ezample 3. Solve Teoy ETg=2‘ﬂ‘“"""""’“"‘""‘""""(1)’..
Te+5Y=29 ..oirerrnrnnieeceeeer s (2).

From (1}, 15 (2274 Bay +4° - 82+ 4y - *) =38 (322 4 2zy — y¥);
- 12952 - 39zy — 38y7 =0
< (32 ~2y) (435 + 199) =0.
Henee Be=2y . d8),
or 482= =108 oo (4).
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Tz + 3y
29

=1, by equation {2).

From (8), = %{ =

LT

LT x.—_-z‘ y:3.

Again, from (4}, ;;z _'—?"'.3 = i:t_irggi!

29
=-5 by equation (2),

2 Rt 1
YT

=9, y=8; oram - ok y=124T

Hence E=2, y=3; orx= 53 V=@ -
Ezample 4. Solve 423 4 Ja*y + 97 =8,

215 - 9% + oy?=1.

Put y=nex, and substitnie in both equations.  Thus

2 {4+3mam3)=8 ... ...
2E-2m+m?)=1 .. ...

R e
2 BmaimE

mé - 8m3 + 19m —12=0;
that is, fm=1)(m~3) (m—4)=0;
-.om=1, 013, or 4,
{i] Take m=1, and substitute in either (1) or {2).
zom (2}, a3=1; . 2=1;
and y=mr=g=1
{ii} Take m=3, and substitnte in {2);

/1
= S,

LY
and y=mr=38r=3 ,\/5.

thas 5rf=1; ..

{iii} Takem=4; we obtain

1029 VA
=Ei ‘“\/ﬁ};
1

and y=mr=dr=14 -

AL
(2.
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Hence the comyplete solution is
171 11
.r=1, \/3 1 \/i_(-) .
2 /1 271
RV
Nore. The sbove method of solution may always be used when the
equations zre of the same degree and homogeneous.
Ezample 5. Solve 3lay®-Tyi-112zy+64=0 ... ............(1}
DB Toy + 40 +8=0 o (2
From (2} we have -8=z"-Tsy+4y?; and, substituting in (1},
Blay? - Tys + Loy (2% - Toy + 494 + {v° - Tay + 4y)°=0;
oo Blsty?t — Tyt (2 — Toy + 45°) (Lday + 2%~ Toy + 492 =0;
. BLefyt —Tyd (o + 4y - (Tay)*=0;

that is, w102 4+ 9yt =0, {3).
o {at -3 27 - 997) =05
hence ==k, or £= =3y,
Taking these cages in succession and substituting in (2), we cbisin
r=y=%2;
B
F=—gy==% -_ § H
r=+3, y==1;

r==3 —i = _i
= AR A i

Nere. It should be observed that equation (3) is homogeneous, The
method bere employed by which one eqnation ia mzde homogeneons by a
snitable combination with the other is a valuable artifice. It is especisily
asefrl in Analytical Geometry.

Ezample 6. Bolve {x+y)'3+2[x—~y}g=3 (:c’—y'-'j%A..,..,__“....‘._,,.‘(l}.

3r-2y=13..... (@)

Divide each term of (1) by (* - v, o1 (z+9)* (2~ 0¥,

1
- L]
z—“:') +2(‘"‘_-_3") =3.
E=1 x+y

e
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- M T+y 5 .
This egnetion is & quadratie in (z_:y) , from which we easily find,

%
({t—y-) =% orl; whence m:& orl:
Z—¥ r-y

oo Tx=9y, or y=0.
Combining these equations with (2), we obfain

=9, y=7; or z=13;3_, y==0.

EXAMPLES. X. b

Solve the following equations :

1. 3z-2y=1, 2. br-y=s3, 3. 4 - 3y=1,
zy=20. ¥2— 62 =125, 12xy +13y2=25.
L rralyttyt=031, 5. 2+ xy +yl=84,
2 2y yE=19. 2 —fzy 4y =6.
8. = +afzy+y =65, 1. 24y =7+ ay,
22+ 2y +yt=2275. 2yt = 133 -2y,
8 3-5yP=T, 9. 5y'-T+8=17, 10. 347+165=16zy,
3oy — =2 Sy — 622=8. Tay+32=132.
1. 3?42y +35=15, 12, #+32-3=3ay,
3lzy - 3a%— 5t =45. 222 ~6+3*=0.
13, 2A4gA=706, 14 Ayr=272, 15, #5—25=099,
z+y=8 z-y=2 z—y=2,
4 2 9 r ¥
16. .‘1’:+y—1, 17. y-i'"; g 18. §+5=5.
4 3 2 5 &
Z =25 == e S
¥tz Ty x+y 6’
1 1ot
19, r+y=1072, 20, zyF+yat=20, 21 al+y2=5,

1 1

11 o8 -
2 +38=18. 2é4 et =85, 8{r 2ty H=A>.
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2. Jrtytalz-y=4, 23, y+/E-1=2,

Y BN == ez BN
z 10 S z— Z i7

Vitaiw B et
T4y=10. 2432 ="T06.

2+ 44— 162=10{3y - 8), zy=6.

2yt +400 =4Ypy, yi=D5zy-4st

4z + By =6+ 20my — 2532+ 22, To—lly=1T.

9554335 - 12=12y — 4y°+ 22y, 2*-azy=18.

(@ ~¢") (w-y)=16zy, (&*—y*) (2*-y*)=6400%2

2% - gy +-yt=0y, 22+ 4wy =5y

Py By s

(t+yl (z-yF 8°

y(y*—Bay 2%+ 24=0, 2(y®-4zy+22%+8=0.

33— Bap? + P+ 21 =0, 2i(y—x)=1.

Y (40% — 108) =2 (25— 0g), 2+ Oy + 37 =108.

8%+ 16 =25 (12v+47), 2t+ay-—yi=4

s(a+x)=y{bty), ax+by=(x+yP

zy+ab=20x, o+ aB=20%2

zra y-b_ 1 1} _
& TTE Tz y—a a—3"%

br?=10abr+3a?y, a®=10ably+3b%.

K

BEEBRSS

5.1‘.'—73{:4.

5 8B BRBHEYR B

5 _y 4 Y
41, m(;-; tamtmtetr Y Loy
137. Equations involving three or more unknown quantities
can. only be solved in special cases. 'We shall here consider some
of the most useful methods of solntion

Example 1. Bolve T 4+Y +2 =13 i e 1,
B 285 e @,
zy=10... {3}

From (2) and (3), {miyl +et=85

Put u for z+y; then thia equation becomes
ut+ =85
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Aleo from (1}, w+2=13;
whence we obtaln =7 or 6; z=06or 7.

Thus we have ct+y= 7, end z+y= 6,
zy=10 ay=10

Hence the golutions are
z=3, or 2, z=8x+ 1,
y=2, or B,i or y=3$~,-:—1-‘

r=6; =7,

Example 2. Solve {z+y) [z +2)=30,

{y+2) {y +2) =15,

(z+2) {z+y) =18
Write u, », w for y+2, z+=, z-+y respectively ; thus

vw=30, wu=15 we=18 ... ... {1).
Multiplying these equations together, we have
ulpho? =30 15 18=157 x 6°;
L upw= 90,

Combining thig result with esch of the equations in (1), we have

w=3 v=08 w=5; 0or u=-3, v=-86, w=-5;

Lytz=3, y+z=-3,
z+z=6,} orx z+x=—6,}
z+Y=5; r+y=—25,
whence x=4, y=1, 2=2; or x=-4, y=-1, 1=-2.
Ezample 3. Solve Py =40 e WD),
Brer+at=19 ... @),
2y +yT=80 (B

Subtraating (2) from (1)
Peatrzly ~1)=30;

that is, {y—sMz+y+2)=30 ..o (4}
Similarly from (1} and (3)
(z-2){zty+2)=10 ... ..o (B
Hence from (4} and (5), by division
Y2 g
z -z

whenre y=3%2--2z.
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Substituting in equation (3}, we obtain
£ —3Jzz +32°=13.

From (2},

z*+ gz 22=19,

109

Solving thess homogeneons eguations ag in Example 4, Art. 136, wea obtain
£=42, z==23; and therefore y= +35;

or

Erample 4.

:':11 . 1
w=t—, t=F—
77

NG

; and therefore ¥y = ¥

7T

Solve xi—yr=a®, ¥ —2a=2%, 2! —ay=cl

Muitiply the equations by ¥, z, = respectively and add; then
crtady +d%=0...........

From (1) and {2}, by cross multiplication,

xz ¥

at—b% ¥ -t

Substitute in any one of the given equations; then
k* (af+ 58 +cf — Batlet) =13

Multiply the equations by z, r, ¥ respectively and add
War+elytalz=0 ...

2 .
prpc e k suppose.

; then

2

5

iy

LS S 1
T @B HIOR Powh | gty ad e 8ot
EXAMPLES. X c.
Solve the following equations :

1. fzx4y-—8=0, 2 Brt+y-2z=0,
42—8y+7s=0, 4z -y —3:=0,
yz+zr+ay=47. B384 F =467,

3 x-y—z=8 4 o+2y-—z=1],

Eal Ny At it P37,
ay=5. xz=21,

5. a4yt—s=21, 6. 2+zyt+as=18,
3wz 4 Byz— Dry =18, #yztye+12=0,
z+y—z=5. 2 +zr+ay=30.

7. 22+ 2ay4 Bez=50, 8 (w—a{z+x)=22

2+ e+ yr=10,
3224 zr + 22 =10,

(2+4) (v—y)=33,
(& ~3) (y=2)=6.

.

(2.
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9. 2fyitu=12, 2%Pni=g8, 2%tui=1, Baoytrtut=4,
10. Ay%2=12, 2Pyt =54, z?y322= "9,

11, ay+x+y=23 12, 2wy —4r4y=17,
r2+x+r=14l, 3ya+y -~ 62="5%,
ye+y+a=2T Bzz+32+27=29.

13. zzty=Tz, yr+x="82z r+y+z=12.

M F+8+P=dd Pryitilad, sty ti=a

15, A+y+d=yztart+ay=a} Sx—yti=aJd

16. 22+y*+ai=8lad, ya+aw—ry=6a% dr+y—2:=3n

InpETERMINATE EQUATIONS.

138. Suppose the following problem were proposed for solu-
tion : _ )

A person spends £461 in buying horses and cows; if each
horse costs £23 and each cow £16, how many of each does he buy?

Tet o, y be the number of horses and cows respectively ; then
23z + 18y = 461.

Here we have one equation involving fwo unknown guantities,
and it is clear that by ascribing any value we please to x, we can
obtain a corresponding value for y; thus it would appear at first
sight that the problem admits of an infinite number of sclutions,
Baut it is clear from the nature of the gquestion that = and ¢ must
be positive integers; and with this restnctlon, as we shall see
later, the number of Solutions is limited.

If the number of unknown quantities is greater than the
number of independent equations, there will be an unlimited
number of solutions, and the equations are said to be indeter-
minate. In the present section we shall only discnss the simplest
kinds of indeterminate equations, confining our attention to posi-
tive integral volues of the unknown quantities; it will be seen
that this restriction enables us to express the solutions in a very
simple form,

The general theory of indeterminate equations will be found
in Chap. xxvL
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Ezample 1. Solve Tz + 12y =220 in positive integers,
Divide throngbhout by 7, the smaller coefficient ; thus

z+y+ﬂ=31+§;

7 i
" z+y+5-3’—,;—3=31 et rrerenenr e {1)
Since x and y are to be integera, we must have

5y—,;3=integer;
snd therefore 15y7_Q=inbeger;
that s, 2y-1+y~%—-—mtegar
and therefore y; =integer—p suppose.

coy—2="Tp,
or y=Tp+2 i (20

Sobatituting this value of  in {1},
2+Tp+2+8p+1=581;
that i, r=288-12p .. ST £ ) N

If in theee results we give top any mtegral value, we oblain correspon&mg
integral valies of 2 and y; but if p = 2, we see from (3) that » is negstive;
and if p is B negative integer, ¥ 1s negative. Thus the only positive integral
values of z and ¥ are obtaired by poiting p=0,1, 2.

The complete solution may be exhibited aa follows:

3]= 0’ 1’ 2!
=28, 16, 4, }

¥= 2, 9, ]6.

Norz. Wken we obtained 59’7' 3 —integer, we multiplied by 3 in order

to make the coefficient of y differ by unity from a multiple of 7. A gimiler
artifice phould always be employed befcre introdaoeing a symbol to denote

the integer.
Ezample 3. 8olve in positive integers, 14z ~11y=29 ....._.......({1).
Divide by 11, the smaller coefficient; thos

3z 7
TrTY= 2+11,
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—28 .
hence 12:;1 S=mf€891‘;
that is, z- 2+%§=integer :
. f{}_—e=integer=p auppose;
. a2=1ip+6 }
and, from {1}, y=ldp+5

This is called the general solution of the equation, and by giving fo p
any positive integral valme or zero, we obtain poszitive integral valnes of z
and ¥; thoe we have

p=0, 1, 2, B,........
= 6, 17, 28, 39, ............ }9
y=5, 18, 33, 47,..... ...
the number of solutions being infinite.
Ezample 3. In how many ways can £3 be peid in half-crowns and floring?
Let « be the number of half-crowns, y the number of Horine; then
S5z+4y=200;

. z+‘y+z= 50;

T .
. ==infeger=p suppose;

2. $=4P,
and Yy =50 - 5p.

Bolatiors sre obtained by asoribing to p the walues 1, 2, 3, ...9; and
therefore the number of wayg iz 9. If, however, the snm may be paid either
in helf-crowns or florins, p may also have the valnes 0 and 10. If =0,
then =0, and the sum ia peid entirely in fiorins; i#f p=10, then y=0, and
the sum is paid entirely in half-erowns, Thus if zero values of x and ¥ are
admissible the number of ways is 11.

Ezample 4. The expenses of a party numbering 43 were £5. 14s. 6d.; if
each man paid 5¢., each woman 2s. 64., and each ¢hild ls., hew many were
there of each?

Let #, y, r denote the number of men, women, nd children, respectively ;
then we have

B

TAYFI= B o (1),
102+ 5y + 22 = 229.
Eliminating z, we obtain 8z+ 3y =143.
The general solution of this eqnation is
r=3p+1,
y=45-8p;
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Hence by sabstitating in (1), we obtain
2 ——.513 -3.

Here p cannot be negative or zero, but way have positive integral values
from 140 5. Thus

p=1 92 3 4, 5
z= 4, 7,10, 13, 16;
y=37, 729, 21, 18, 5;
z= 2, 7,1%2,17,22

EXAMPLES, X. 4
Solve in positive integers:
1, 3z+48y=102 2 br4+Zy—>53. 3, Tatli2y=152

4 18v+lly=414 5. 230 +25y=915. 6. 4&lw+4Ty=219L.

Find the general solution in positive integers, and the least values
of z and » which satisfy the equations:

7. Bz-Ty=3 8 6r-13y=1. 8, 8- 2y=33.
10, 17y—13z=0. 11 19y—23s=7 12 77y—30r=295.

18. A farmer spends £752 in buying horses and cows ; if each horse
costs £37 and eack cow £28, how many of each does he buy?

14, In how many ways can £56 be paid in shillings and sixpences,
including zero solutions ?

15. Divide 81 inte twe parts so that one may be a multiple of 8
and the other of 5.

16, What is the simplest way for a person who bas only guineas
to pay 10s. 6d. to ancther who has only half-crowns ¢

17. Find a number which being divided by 39 gives a remainder 186,
and by 56 a remainder 27. How many such numbers are there?

18. What is the srallest number of florins that must be given to
discharge a debt of £1. 6s. 6d, if the change is to be paid in half-crowns
only 3

18, Divide 136 into two parts one of which when divided by 5
leaves remainder 2, and the other divided by 8 leaves remainder 3.

20, I buy 40 animals consisting of rams at £4, pigs at £2, and oxen
at £17: if T spend £301, how many of each do [ buy?

21. In my pocket Ihave 27 coins, which are sovereigns, half-crowns
or shillings, and the amount I have is £5. Qs €d.; how many coins of
each sort have I'}

H H.A. 8



CHAPTER XL
PERMUTATIONS AND COMBINATIONS.

139. EacH of the arrangements which can be made by taking
some or all of a number of things is called a permutation.

Each of the groups or selections which can be made by taking
some or 2ll of a number of things is called a combination,

Thus the permautations which ean be made by taking the
letters a, b, ¢, d two at a time are twelve in number, namely,

ab, “ac, ad, be Bbd, cd,
ba, c¢a, da, cb, b, de;

each of these presenting a different arrongement of two letters.

The combinations which can be made by taking the letters
a, b, ¢, d two at a time are six in number: namely,

ad, ac, ad, b¢, bd, cd;
each of these presenting a different selection of two letters.

From this it appears that in forming combinaiions we are only
concerned with the number of things each selection contains;
whereas in forming permutations we have also to consider the
order of the things which make up each arrangement; for instance,
if from four letters a, b, ¢, & we make a selection of three, such
as abe, this single combination admits of being arranged in the
following ways :

abe, ach, bea, bac, cab, cha,

and so gives rise to six different permutations.
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146, Before discussing the general propositions of this
chapter there is an important principle which we proceed to
explain and illustrate by a few numerical examples.

If one operation cun be performed in 1 ways, wnd (when it
has been performed in any one of these ways) @ sccond operation
van then be performed in n ways . the vaumber of ways of per-
Jorming the two operations will bem x n.

If the first operation be performed in any one way, we can
associate with this any of the n ways of performing the second
operation : and thus we shall have » ways of performing the two
operations without considering more than ong way of performing
the first; and so, corresponding to each of the m ways of per-
forming the first operation, we shall have n ways of performing
the two; hence altogether the number of ways in which the two
operations can be performed is represented by the product
L

Exzumple 1. There are 10 steamers plying befween Liverpool and Dublin;
in how mary ways ean a man go from Liverpool to Dublin and retwrn by a
different steamer?

There are ten ways of making the first passage; and with each of these
there is a ¢choice of ninz ways of retarning {since the man is not to come back
by the same steamer); hence the number of ways of making the two jonrmeya
is 10 %9, 0r 20.

This principle may easily be extended to the case in which
there are more than two operations each of which can be per-
formed in a given number of ways.

Erample 2. Three travellers arrive st & town whers there are four
hotels; in how many ways can they take op their quarters, each at a
different hotel?

The first fraveller has choice of fonr hotels, and when he has made hig
salection in any one way, the seceond traveller has a choica of three; there.
fore the first iwo can make their choice in 4 x 3 ways; and with any cne sach
choice the third {raveller can select his hotel in 2 ways; hence the required
mumber of ways is 4 x5 2, or 24, ’

141, To find the number of permutations of n dissinilur things
taken r at & time.

This is the same thing as finding the number of ways in which
we can HH up » places when we have n different things at our
disposal.

The first place may be tilled up in n ways, for any one of the =
things may be taken; when it has been iilled wp in any one of

8—2
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these ways, the second place can then be filled up in»n — 1 ways;
and sinee each way of filling up the first place can be associated
with each way-of tilling up the second, the number of waysin
which the first two places can be filled up is given by the product
#(n—1}) And when the first two places have been filled up in
any way, the third place can be filled up in = -2 ways. And
reasoning as before, the number of ways in which three places can
betilledupisn{n—1)(n-2)

Proceeding thus, and noticing that a new factor is introduced
with each new place filled up, &4nd that at any stage the number
of factors is the same as the number of places filled up, we shall
have the number of ways in which » places can be filled up
equal to

: n{n—-1){r~2)..... to r factors ;
and the ' factor is
n-(r—1), or w-r+1

Therefore the number of permutations of » things taken » at

a time is
n(m-1}{n-2).....(n=r+1)
Cor. The number of permutations of » things taken all at

a time is
nin-1){n=-2).... to n factors,

or n{n-=1)(n-2...3.2.1.

It is usual to denate this pmduct by the symbol [z, which is
read “factorial #.” Also n! is sometimes used for jre.

142. We shall in future dencte the number of permutations
of » things taken » at a time by the symbol *P,, so that

P=an—-1)(n-2).... m—r+1};
also P =
In working numerical examples it is useful to notice that the

suffix in the symbol *P, always denotes the number of factors in
the formula we are using.

143. The number of permutations of % things taken r at
a time may also be found in the following manner.

Let "P, represent the number of permutations of m things
taken r at a time.
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Suppose we form all the permutations of = things taken » — 1
at a time; the number of these will be "P__

With eack of these put one of the remaining »—»+1 things.
Each time we do this we shall get one permutation of » things
# at a time ; and therefore the whole number of the permutations
of n things r at a time is "P,_ x (n ~¢+ 1); that is,

#—1

"P,="P

r—1

-

. x{n—r+1).
By wrniting » — 1 for = in this formula, we obtain

“P_ ="P,_,x(n—r+2),

similarly, "P_="P _x(n—r+38)

. 3=-.P2X(‘?‘!.— 2))
"Po="P x(n-1),
"Pl=na.
Multiply together the vertical columns and cancel like factors
from each side, and we obtain
Poenn-—1Dn-2). ... (n—r+1)
Ezample 1. Four persons enter & railway carriage in which there are six
seats; in how many ways can they take their places ?

The first pereon may seat himself in 6 ways; and then the second parson
in §; the third in 4; and the fourth in 3; and since each of these ways may
be associated with eech of the others, the required answer is 6x5x4x3,
or 360.

Erample 2. Eow many different numbers can be formed by nsing riz out
of the nine digite 1, 2, 3,...97

Here we have 9 different things and we have to find the number of per-
mutations of them taken 6 at a tima;

.*. the required result="*P,
=9x8xTxbx5x4
= 60480,

144, To find the number of combinations of n dissimilar
things taken r at « lime.
Let “C’ denote the required number of combinations.

Then each of these combinations consists of a group of r
dissimilar things which can be arranged among themselves in
jr ways. [Art. 143,



118 HIGHER ALGEBRA.

Hence “C_x r is equal to the number of arrangements of n
things taken # at a time ; that is,

"Cox|r="0,
=n(n-Dr-2)..(n-rtl);
y .Czn(n—l)(n—‘:’)...(n—r—i—]_) ........ (1.

¥
|

Cor. This formula for "¢, may also be written in a different
form ; for if we multiply the numerator and the denominator by

'n -+ we obbaln
afn~1{n-2) ... (n—r+1)xin—r
|rin—r )
The numerator now consists of the product of all the natural
numbers from » to 1;

v S e (2).

- |_’f]7'i,—’l‘ cesrreaanaan

Tt will De eonvenient to remember both these expressions for
*(,, using (1) in all cases where & numerical result is required,
and (2) when it is sufficient o leave it in an algebraical shape.

Nore. If in formuls {2) we put r=n, wa bave
w1
n ——r =
NCTONCE
but *C, =1, 80 thet if the formula is to be true for r=m=, the gymbol ]_0 munat
be considered as equivalent to 1.
Ezemple. From 12 books in how many ways can a selection of 5 be

made, (1) when one specified book is always Included, (2) when one apecifisd
book ia always excluded ?

{1} Since the specified book is fo be included in every selection, we
have only to choose 4 out of the remsiniog 11,

Hence the number of ways=1¢,
_11x10x9x8
T IxZx3%d

=330,
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S} Since the specified book iz slways to be ercluded, we have to
select the 5 books out of the remaining 11

Hence the number of ways=11C,

_ I xlox9xBxT
T lx2x8x4dxE

=462,

145, T%he number of combinetions of n things t at o time 4s
equal to the number of combinations of n things n —r at « time.

In making all the possible combinations of # things, to each
group of r things we select, there is left a corresponding group of
n—7 things; that is, the number of combinations of = things
r at a time is the same as the number of combinations of » things
n—+at a time;

o "0 ="C,

—p

The proposition may also be proved as follows :

, 7
0,‘—.—='__-L_'__
n—rn—(n—r)

In

"t

=",

r

[Art. 144,]

Buch combinations are called complementary,

Nore. Putr=mn, then "C,=*¢, =1.

The result we have just proved is useful in enabling us to
abridge arithmetical work.

Ezample. Out of 14 men in how many ways can an sleven be chosen?

The required number =140,

If we had made use of the formula H¢;, we should have had to reduce an
expression whose numeretor and denominator each contained 11 factors,
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- 148. To find the number of ways in which m + n things can be
divided Into fwo groups conteining m and n things respectively.
This is elearly equivalent to finding the number of combi-
nations of m + = things m at a time, for every time we select
one group of m things we leave a group of » things belind.
b+ n
Thus the required number = - .
" F

Note. If n=m, the groups are equal, and in this casa the number of

2m

different ways of aubdividion is B for in any one way it ia possible

to interchange the two groups withoit cbtaining & new distribntion.

147, To find the number of ways in which ro + n + p things can

be divided into three groups confaining ™, n, P things severally.
First divide m+n +p things into two groups containing

and =+ p things respectively : the number of ways in which this

ean be done is [m+%+p
L ’n+p

Then the number of ways in which the group of =+ p things
can be divided into two groups containing » and p things respec-
|
)

Hence the number of ways in which the subdivision into three
groups containing m, #, p things can be made is

,m+ﬂ.+p 7+ p Im+n+p

@&z“mm e

; but this formula regarda

a8 different all the possible orders in whi Ltha “three groupe can oceur in
any one mode of subdivision. Amnd since there are {3 such orders cor-
responding to each mode of subdivigion, the nmmber of different ways in
(2
mm m 3

Ezample. The numberlosf vwaye in which 15 recruits can be divided into

tively is

Nore. Ifwepntn=p=m, we obtam

which subdivisicn into three equal groups ean be made is

three equal groups ia J:5—— 5 3 ; and the number of waye in which they

can be drafted into three different regiments, five into each, is - |.-1£

i3
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148. In the examples which follow it is important to notice
that the formula for permuitations should not be used until the
suitable sefections required by the question have been made.

Exzample 1. From 7 Englishmen and 4 Americans & committee of 6 iz fo

be formed; in how many ways can this be done, (1) when the eommittee con-
taing exactly 2 Americans, (2) st least 2 Americans?

{1} We have to choose 2 Americans and 4 Englishmen.

The number of ways in which the Americans ¢an be chosen ia 4C,; sud
the number of waye in which the Epglishmen ecan be chosen is 7C,.  Each of
the firgt groups can be aesociated with each of the second; hence
the required number of ways=1C, < 7C,

4 17
HIEMTIE

=210.

==

RIEIE
{2} The committee may contain 2, 3, or 4 Amaricans,
We shall exhaust 2]l the suitable combinations by forming alt the groupe

containing 2 Americans and 4 Englishmen ; then 3 Americans snd 8 English-
men; snd lastly 4 Americans and 2 Englishmen.

The sum of the three resnlts will give the answer. Hence the required
number of ways =40 xTC FIC R TOy 4G % 7C,

4 7 4 T 7
=——L_ X—--—E_ + -[_ X —I—'r—"-{‘l X-—v—-—-L
CE ERETEET CER
=210+140+21=371.
In this Exomple we have ouly to make nse of the.suitable formuls for
combinations, for we are not concerned with the possible arrangements of the
members of the committee rmong themsslves.

FErample 2. Qut of T consonantz and 4 vowels, how many words can be
made each containing 3 eonsonants and 2 vowels?

The number of ways of cheosing the three comsonants is 7C,, and the
nomber of ways of choosing the 2 vowels is 40, ; and since each of the firs
groups can be associated with each of the seeond, the number of eombi
groups, ezoh contaiving 3 consonants and 2 vowels, is 7€y x 40,

Farther, each of these groaps contains 5 letters, which may be arrangsd
among themselves in |5 ways. Hence

the required number of worda="Cyx ¥C,x |3
7 4
= -l-“— x —L’— X i5
FECRECL
=5 x E

=252001
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" Example 3. How many words can be formed ont of the letters article, so
that the vowels cceupy the even places?
Here wo have to pub the 3 vowels in 3 specified plaees, and the 4 congo-
nants in the 4 remaining places; the first operation can be done in I_.’i_ ways,
and the second in |4. Hence

the required number of words =8x Lé_;
=144,

Ir this Example the formula for permutations is immediately applicable,
becanse by the statement of the guestion there is but one way of choosing the
vowels, and one way of choosing the consonants.

EXAMPLES XI. a.

1. In how many ways can a consonant and a vowel be chosen out of
the letters of the word courage?

2. There are 8 candidates for a Classical, 7 for a Mathematical, and
4 for & Natural Science Scholarship. “In how many ways can the
Schelarships be awarded?

3. Find the value of 35, 8P, %#(C,, BC,,.

4. How many different arrangements can be made by taking 5
of the letters of the word egquation?

5. If four timesthe number of permutations of n things 3 together
is equal to five times the number of permutations of n—1 things
.3 together, find n.

8. How many permutetions can be made out of the letters of
the word triangle? How many of these will begin with ¢ and end
with e ¢ . :

7. How many different selections can be made by taking four of
the digits 3, 4, 7,5, 8, 17 How many different numbers can bo formed
with four of these cligits? '

8. If ™(, : "Cy=44 : 3, find .

9. How many changes can be rung with a peal of 5 bells?

10. How many changes can be rung with a peal of 7 bells, the tenor
always being last?

11, On how many nights may a watch of 4 men be drafted from a
crew of 24, 80 that no two watches are identical ¥ On haw many of these
would any one man be taken?

12 How many arrangements can be made out of the letters of the
word draught, the vowels never being separated ?
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13. In a town council there are 23 councillors and 10 aldermen ;
how many committees can he formed each consisting of 5 councillors
and 3 aldermen 1

14,  Out of the letters 4, B, C, p, ¢, r how many arrangements can
be r'nt;??e (1) beginning with & capital, (2) beginning and ending with a
capl ’

15, Find the number of combinations of 50 things 46 at a time.
16, If ~0,=nC,, find »0Y,, 20,

17. In how many ways can the letters of the word wowsls be
arranged, if the letters oe can only cccupy odd places

18. From 4 officers 2nd 8 privates, in how many ways can 6 be
chosen (1) to include exactly one officer, (2) to include at least one
officer?

19. Ip how many ways can a party of 4 or more be selected from
10 persons {
20, If 80, =10 ., find *C}.

21, Out of 25 consonants and 5 vowels how many words can be
formed each consisting of 2 consonants and 3 vowels?

22, In a library there are 90 Latin and 6 Greek books: in how
many ways can & group of § consisting of 3 Latin and 2 Greek books be
placed on a shelf?

23, In how many ways car 12 things be divided equally amang 4
persons ¢

24, From 3 capitals, 5 consonants, and 4 vowels, how many words
can be made, each containing 3 consonants and 2 vowels, and beginning
with a capital ?

25. At an election three districts are to be canvassed by 10, 15, and
20 men reapective?. If 45 men volunieer, in how many ways can they
be allotted to the different districts?

26. In how meany ways can 4 Latin and 1 English book be placed
on & shelf so that the English book is always in the middle, the selec-
tion being made from 7 Latin and 3 English books?

27. A bost is to be manned by eight men, of whom 2 can only row
on bow side and 1 can only row on stroke side; in how many ways can
the crew be arranged ?

28, There are two works each of 3 volumes, and two works each of
2 volumes ; in how many ways can the 10 books be placed on a shelf so0
that volumes of the same work nre not separated?

29. In how many ways can 10 examination papers be arranged so
that the best and worst papers never come together?
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30, An eight-oared boat is to be manned by 2 crew chosen from 11
men, of whom 3 can steer but cannat row, and the rest can row but can-
not steer. In how many ways can the crew be arranged, if two of the
men can only row on bow side? .

31, Prove that the number of ways in which p positive and =
negative signs roay be placed in a row so that no two negative signs shall
be together is P+ 10,

32, Ifs6p .. %P, .=30800:1, find ~.

. 33. How many different signals can be made by hoisting 6 differ-
ently coloured flags one above the other, when any number of them
may be hoisted 2t once?

34, IfBC, : ¥, ,=225:11, find r. .

148, Hitherto, in the formule we have proved, the things
have been regarded as unlike. Before considering cases in which
some one or more sets of things may be like, it is necessary to
point out exactly in what sense the words like and wnlike are
used. When we speak of things being dissimilar, different, un-
like, we imply that the things are wsibly wnfike, so as.to be
easily distinguishable from each other. On the other hand we
shall always use the term Iike things to denote such as are alike
to the eye and cannot be distinguished from each other, For
instance, in Ex. 2, Art. 148, the consonants and the vowels may
be said each to consist of a group of things united by a common
characteristic, and thus in a certain sense to be of the same kind;
but they cannot be regarded as like things, because there is an
individuality ‘existing among the things of each group which
makes them easily distinguishable from each cther. Hence, in
the final stage of the example we considered each group to
consist of five dissimiler things and therefore capable of |5
arrangements among themselves. [Art. 141 Cor.] :

150. Buppose we have tofind all the pdésible ways of arrang-
ing 12 books on a shelf, 5 of them being Latin, 4 English, and
the remainder in different languages. '

The hooks in sach language may be regarded as belonging to
one class, united by a common characteristic; but if they were
distinguishable from each other, the number of permutations
would be 112, since for the purpose of arrangement among them-

selves they_;re essentially different.
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- Tf, however, the books in the same language are not dis-
tinguishable from each other, we should have to find the number
of ways in which 12 things can be arranged among themselves,
when J of them are exactly alike of one kind, and 4 exactly alike
of a second kind: a problem which is not directly included in any
of the cases we have previously considered.

151. o find the number of ways in which n things may be
arranged among themselves, taking them oll of o time, when p
of the things are ewactly alike of one kind, q ¢f them ewactly
altke of another kind, r of them exactly altke of a third kind, and
the rest all different.

Let there be n letters ; suppose p of them to be g, ¢ of them
to be b, + of them to he ¢, and the rest to be unlike.

Let = be the required number of permutations; then if the
p letters @ were replaced by p unlike letters different from any
of the rest, from any one of the x permutations, withont alter-
ing the position of any of the remaining letters, we could
form [p new permutations. Hence if this change were madé

in each of the z permutations we should obtain = x |p permuta-
tions, -

Similarly, if the ¢ letters b were replaced by ¢ unlike letters,
the number of permutations would be

mx@xiz.

In like manner, by replacing the » letters ¢ by » unlike letters,
we should finally obtain x x E % |g * {r permutations.

But the things are now all different, and therefore admit of |n
permutations among themselves, Hence

oxfpxlgx = fus
that i =__ta.;__ .

" el
which is the required number of permutations.

Any ease in which the things are not 2]l different may he
treated similarly.
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Erample 1. How many different permutations can be made out of the
letters of the word assassination teken all together?

We have here 13 letters of which 4 are s, 8 are «, 2 are 4, and 2 are n.
Henee the number of permutations

|13
CEB22
=13.11.10.9.8.7.3.5
=1001 x 10800 = 10810800.

Ezample 2. How many numbers czn bhe formed with the digits
1,2,8 4,3, 2, 1, so that the odd digits always ocoupy the odd places?

The codd digits 1, 3, 3, 1 can be arranged in their four places in

The even digits 2, 4, 2 can be arranged in their three places in

4 '
—E— WEBFE it eeee e (B
Kach of the waysin (1) can be asljociated with each of the ways in {2).
4 3
T == === =
Henuehhemqun'ednumber_EEx 2 6x3=18.

152. To find the number of permastations of n things r ot ¢
time, when each thing moy be repemted once, twice,...... up o r
times n any arrangement,

Here we have to consider the number of ways in which »
places can be filled up when we have n different things at our
disposal, each of the » things being used as often as we please in
any arrangement.

The first place may be filled up in % ways, and, when it has
been filled up in any one way, the second place may also be filled
up in % ways, since we are not prestuded from using the same
thing again. Therefore the number of ways in which the first
two places can be filled up is n xn or @’ The third place can
also be filled up in n ways, and therefore the first three places in
%’ ways.

Proceeding in this manner, and noticing that at any stage the
Index of # is always the same as the number of places filled p,
we shall have the number of ways in which the 7 places can he
filled up equal to =",



PERMUTATIONS AND COMBINATIONS. 127

Ezample. In how many ways can § prizes be given away to ¢ boys, when
each hoy is eligible for all the prizes?

Any one of the prizes can be given in 4 ways; and then any one of the
remaining prizes can also be given in 4 ways, since it may be obtained by the
boy who has already received a prize. Thus two prizes can be given away in
47 ways, three prizes in 4% ways, and sc on,  Hence the 5 prizes can be given
awsy in 45, or 1024 ways.

183, To find the tolal number of ways in which it is possible
to make a selection by taking some or all of o things.

Each thing may be dealt with in two ways, for it may either
be taken or left; and since either way of dealing with any one
thing may be associated with either way of dealing with each one
of the others, the number of ways of dealing with the » things is

Ix2x3x2.. to 4 factors.

But this ineludes the case in which all the things are left,
therefore, rejecting this case, the total number of ways is 2" -1

This is often spoken of as “the total number of combinations”
of n things.

Example. A man hag 6 friends; in how many ways msy be invite one or
more of them to dinner?

He has to select eome or sll of hiz 6 friends; and therefora the number of
waye is 29~ 1, ox 63,

This resnlt can be verified in the following manner.

The guests may be invited singly, in twos, threes,...... ; therefore the
rumber of selections =50, +8C,+3C;+ 00, + 00y +8C,

=64+154+20+15+641<=68,

154,  To find for what value of v the number of combinations
of nt things v at ¢ lume i greatest.

=n(n—1)(n—2) ...... (n—r+2n-r+1)

Since

1.2.8... (r=Dr ,
wpy _n{n=1}n-2) ... (n-r+2}
and Orms= 1.2.3...(r=0) ;
~ x n—ril
2. C.-: or-1 TT

e+l

-1,

which shews that il decreases as » increases. Hence as » receives

The multiplying factor 11—_;—1 may be written

.
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the values 1, 2, 3...... in succession, "('_is continually increased
until ntl_ 1 becomes equal to 1 or less than 1,
r
Now ’rf_-t:_l. -1~1,
r
+1
so long as iy ;
. r
. 1
that is, 212-— > .

We have to choose the greatest value of » consistent with
this inequality.

{1y Letx be even, and equal to 3m; then

n+l Zm+l +1_
7 g TE

and for all values of ¢ up to s inclusive this is greater than 7.
Hence by putting r~m = g, we find that the greatest number of
combinations is “C,

E

(2) Letn be odd, and equal to 2m + 1 ; then

n+l 32m+2. 1:
R R
and for all values of » up to m inelusive this is greater than r;
but when r=m + 1 the multiplying factor becomes equal to 1, and

-Cm‘i-l ="C,; thatis, ~ ="C\y;

w1 =
F3

and therefore the number of combinations is greatest when the
things are taken ?—E—l, or ?%I at a time; the result being the

same in the two cases.

155. The formula for the number of combinations of » things
7 at a time may be found without assuming the formuls for the
number of permutations, :

Let "C, denote the number of combinations of n things taken
7 at a time; and let the n things be denoted by the letters
b d..... . ’
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Take away «; then with the remaining letters we can form
*=1(r _, combinations of n—1 letters taken r— 1 at a time. With
each of these write a; thus we see that of the combinations
of » things » at a time, the number of those which contain
a is "7'C _; similarly the number of those which contain
bis*7'C,_,; and so for each of the n letters.

Therefore = x " 7'C,_, is equal to the number of combinations
# at & time which contain @, together with those that contain b,
those that contaln ¢, and 50 on.

But by forming the combinations in this manner, each par-
ticular one will be repeated r times. For instance, if =3, the
combination abe will be found among those containing «, among
those containing b, and among those containing ¢.  Hence

ucrr - 10

r—1

By writing » — 1 and »—1 instead of » and  respectively,

—t . n-~1
Or-l = scr—ﬁ ® ] ’
-2
Similarly, Q=" ":_m_ s
—r Ay n—=r+
+’C{’ 410 3 ;
and finally, T =n—r+ L.

Multiply together the vertical columns and cancel like factors
from each Side; thus
*Or _n(’fb—'l)(n— 2) e (ﬂ.—'?"’“ 1)
STy P U P S N 1 ‘

156, To find the total number of ways in which it is possible
to make o selection by faking some or all out ¢f p+gq+r+......
things, whereof p ave alike of one kind, q alike of & second kind, ¥
alite of @ third kind,; and so on.

The p things may be disposed of in p+1 ways; for we may
take 0, 1, 2, 3, ... p of them. Similarly the ¢ things may be
dlsposed of in g+1 ways the # things In r+ 1 ways; and
50 on.

H. H A. 9
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Hence the number of ways in which all the things may be
disposed of is {p+ D){g+ D (=+1).......

But this includes the case in which none of the things are
taken ; therefore, rejecting this case, the total number of
ways is

(p+}{g+1){r+1)......~1,

157, A general formula expressing the number of permuta-
tions, or combinations, of » things taken + at a time, when the
things are not all different, may be somewhat complicated ; but a
particular case may be solved in the following manner,

Ezample. Find the number of waysin which (i} a selection, {2) an ar-
rangement, of four letters can be made from the letters of the word
proportion.

There ara 10 letters of six different sorts, namelyo, 0,0; p,p; v, #; ¢;i; n.

In finding groups of four these may be classified as follows:

(1} Thres alike, one differsnt.

(23 Two alike, two others alike.

{8} Two alike, the other fwo different.
{4} Al four different.

{1) The selecfion can be made In 3 ways; for each of the five letters,
P, 7y £, 4, m, can be taken with the single group of the three like latters o.

bgﬁ} The selection can be made in *C, waye; for we have to choose two out
of tha three pairs 6, 0; p,p; 7, r. This gives 8 selections.

{3) This selection can be made in 3% 10 ways; for we seleet one of the
3 pairs, and then two from the remaining 5 letters, This gives 30 selectiona.

{4) Thiz selection can be made in ¢, ways, as we have to falte 4 different
letters to choose from fhe six o, p, v, ¢, %, n.  This gives 15 selections.

Thus the total number of selections is 5 +3+ 30+ 15; that is, 53.

In finding the different arrangements of 4 letters we have 0 permute in
all possible ways each of the foregoing groups.

4
(1} gives rise to 5x -E , or 20 arrangements.
; 4
{8 gives riceto 3x %12 , or 18 arrangements.
Ll

4
{8) gives risa to 30 x-_IE , or 380 arrangements.

{(4) givea rise to 15 {4, 0r 360 arrangements,
Thus the total number of arrangements is 2014+ 18 + 860+ 360; that is, 758.
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EXAMPLES, XTI b,

1. Find the number of arrangements that can be made out of the
letters of the words

(1) independence, (8} superstitious,
(3} Institutions.

2. In how many ways can 17 billiard balls be arranged, if 7 of
them are black, 6 red, and 4 white?

3. A room is to be decorated with fourteen flaga; if 2 of them are
" blue, 3 red, 2 white, 3 green, 2 yellow, and 2 purple, in how many ways
can they be hung?
4, How many numbers greater than a million can be formed with
the digits 2, 3, 0, 3, 4, 2, 3¢
5. Tind the number of arrangements which can be made out of the

letters of the word alpebra, without altering the relative positions of
vowels and consonanta,

6. On three different days a man has to drive to a railway station,
and he can choose from 5 conveyances; in how many ways can he male
the three journeys?

7. I have counters of » different colours, red, white, blue,......; in
how many ways can I make an arrangement consisting of r counters,
supposing that there are at least » of each different colour?

8. In a steamer there are stalls for 12 animals, and there are
cows, horses, and calves (not less than 12 of each) ready to be shipped;
In how many ways can the shipload be made?

9. In how many ways can » things be given to p persons, when
there is 0o restriction as to the number of things each may receive?

10, In how many ways can five things be divided between two
persons ?

11, How mauny different arrangements can be made out of the letters
in the expression ¢?b?c* when written at full length?

12. A letter lock consists of three rings each marked with fifteen
different letters ; find in how many ways it is possible to make an
upsuccessful attempt to open the lock

13. Find the number of triangles which can be formed by joining
three angular points of & quindecagon.
14, A library has @ copies of one book, & copies of each of two

books, ¢ copies of each of thres books, and single copies of & books, In
how many ways can these books be distributed, if all are out at once?

15. How many numbers less than 10000 can be made with the
eight digits 1, 2, 3,0, 4,5, 6, 7

16. In how many ways can the following prizes be given away to a
class of 20 boys: Grst and second Classical, first and sacond Mathe-
matical, first Science, aud first French ?

9—2
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17, A telegraph has 5 arms and each arm is capable of 4 distinet
positions, including the position of rest; what is the total number of
signals that can be made!?

18. In how many ways can 7 persons form a ring? In how many
ways can 7 Englishmen and 7 Americans sit down at a round table, no
two Americans being together?

19, In how many ways is it possible to draw 2 sum of money from
& bag containing asovereign, 2 half-sovereign, a erown, a florin, a shilling,
a penny, and & farthing?

20. From 3 cocoa nuts, 4 apples, and 2 oranges, how many selec-
tions of frudt can be made, taking at least one of each kind?

21. TFind the number of different ways of dividing mn things into
‘neqnal groups.

22. How many signals can be made by holsting 4 flags of different
eolours one above the other, when any number of them may be hoisted
at once? How many with 5 flags?

23, Find the number of permutations which can be formed out of
the letters of the word series taken three together?

24 There are p points in a plane, no three of which are in the same
straight line with the cxception of ¢, which are all in the same straight
line; find the numbher (1) of straight lines, (2) of triangles which result
from joining them.

25. There are p points in space, no four of which are In the same

lane with the exception of ¢, which are all in the same plane; find
Eow many planes there are each containing three of the points.

26. There are n different bocks, and p copies of each; find the
number of ways in which a selection can be made from them.

27. Find the number of selections and of arrangements that can be
made by taking 4 letters from the word ezpression.

28. How many permutations of 4 letters can be made out of the
letters of the word eramination?

29. Tind the sum of all numbers greater than 10000 formed by
using the digits 1, 3, 5, 7, 9, ne digit being repeated in any number.
30. Find the sum of all numbers greater than 10000 formed by
using the digits 0, g, 4, 6, 8, no digit being repeated in any number.
81, 'If of p+g+r things p be alike, and ¢ be alike, and the rest
different, shew that the total number of combinations is
(p+1)(g+1)or—1
32. Shew that the number of permutations which can be formed

from 2n letters which are either ¢’s or s is greatest when the number
of a's is equal to the number of bs.

33. Ifthe n+1numbersa, b, ¢, d,...... be all different, and each of
them a prime number, prove that the number of different factors of the
expression a®bed...... Wm+l)an-1.



CHAPTER XII.
MATHEMATICAL INDUCTION.

158. Maxy important mathematical formule are not easily
demonstrated by a direct mode of proof; in such eases we fre-
quently find it convenient to empley a method of proof known as
mathematical inductior, which we shall now illustrate,

Ezample 1. Suppose it is required to prove that the sum of the cubes
5
of the first » nataral numbers iz equal to {ﬂﬁg—l)} .

‘We can easily see by trial that the statement iz trus in simple cases, such
as when n=1, or 2, or 3; and from this we might be led to conjecture that
the formula was true in all eases. Assume that it is true when n terms ard
taken; that is, suppose

g
181204834 tonterms:i’i@gll-)f.

A4d the (n+ 1)t term, that is, (n+1)° to each side; then

18
12+ 2343°4 . towm-+1 terme= {Eﬂgﬂ“ +({n+1)2

L fnd
=412 (;—-a- n+1)

(n 1) (0 +4n+4)
=or Rty

{u+1} (n+2))°
2 [

which is of the same form &g the result we assumed to be true for » terms,
n+ 1 teking the place of n; in other words, if the result ia {rue when we fake
a certain number of terms, whatever that number may be, it is true when we
increase that mumber by one; but we see that it iz true when 3§ terms aze
taken; therefore it is true when 4 terms are taken; it iz therefore irue when
5 terms sre taken; gnd so on. Thus the result is true universally.
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Egample 2. To detarmine the product of n binomial factors of the form -
T+ a.
By actual multiplieation we have
(z+a} (z+0) (z+e)=28+ {a+b+e) £+ {ab + b+ ea) z + abe;

(mtal{c+b) (z+e) (x+dj='+{a+Dtc+dj2?
+{ab + ac+ ad + be+ bd + cd) 2*
+ (abe + abd + acd + hed} z+adbed,
In these results we observa that the following laws hold:
1. The number of terms on the right is one more than the number of
binomial factors on the left.

2. The index of x in the first ferm iz the same as the nnmber of
binomial factors; and in each of the other terms the index is one less than
that of the preceding texrm,

3. The eoefficient of the firat term is unity; the coefficient of the zecond
term is the sum of the letters @, &, ¢, ...... ; the coefficient of the third
term is the sum of the products of thess letters taken two at & time;
the coefficient of the fourth term is the sam of their producis taken three at
% time; and 8o on; the last term is the product of all the letters.

Assume that thess laws hold in the case of n- 1 factors; that is, suppose
{z+a) (z+D)...(z+ A) =214 pir™ 24 pa I P it L Ppys

where m=atdte+ .k,
Pa=ubtact . tahtbetbdt...
m=abe+abd+...... H
P =abc.. R

Multiply both sides by another factor = + % thus

(z+atiz+D) ... {z+4) (= +F)
=T {py+ k) 27714 (P p k) 2™ (P + pak) 23 L 4D k-

Now Ptk=(e+d+e+. . +M)+Ek

=pum of all the n letlers a, b, ¢,. . %;
Pyhpk=ptklatb+. . +h)
=sum of the produels taken two at & time of all the
n letbers a, b, ¢,... k3

Pytph=pyt-kilabrac+ .. +rak+bet..)
=sum of the products taken three at & time of all
the n lefters @, b, ¢, ... &; .

Pr—k=product of all the n lattern a, b, ¢, ... k.
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If therefore the laws hold when n—1 factors are multiplied together,
they held in the cas¢ of n factors. But we have seen that they hold in the
cage of 4 factors; therefore they heold for 5 factors; therefore also for 6
factors; and so on; ihus they held universally. Therefore

(z+aylzt+b)(z+e) .. 2+E) =2+ 82"+ S 2 + S 254 L+ 8,
where 5, =the sum of all the n letters a, b, ¢ ... k;
8,=the sum of the products taken two at a time of these n lattera.

$,=the product of all the n letters,

159. Theorems relating to divisibility may often be esta-
blished by induction.

Ezample. Shew that «™ -1 is divisible by r~ 1 for all positive infegral
values of n.
1 -1
=gl
w1 0 T z-1

By division ;
if therefore r™ =1 is divisible by z -1, then z~-1 is also divisible by z-1.
But 22— 1 is divisible by z-1; therefore &%— 1 is divisible by x—1; there-
fore x*— 1 is divisible by z ~ 1, and a0 on ; hence the proposition is established.

Other ezamples of the same kind will be found in the chapter on the
Theory of Numbers.

160. TFrom the foregoing examples it will be seen that the
only theorems to which induction can be applied are those
which admit of successive cases corresponding to the order of
the natural numbers 1, 2, 3, ...... f.

EXAMPLES. XII.

Prove by Induction :
1, 143+5+......+{%n—-1)=n

2 12422434 +n2=%ﬂ(n+1)(2n+1).
8. 249 +BF . F2 =22 1)

- 1 1 T, ?L
4 1_._2+§T§+m-'_ ...... tonberms_-Tl

5. Prove by Induction that z~—jp* is divisible by z+y when 2 i
even.
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161. Ir may be shewn by actual multiplication that

(m+ a) (@ +b) (w+e) {2+ d)
=z'+(e+b+ec+d) B+ (wb+ac+ad+be+ bd+ed) 2’

A {abe+abd+ acd+bed) e rabed oo (1.

We may, however, write down thiz result by inspection ; for the
complete product consists of the sum of a number of partial pro-
ducts each of which is formed by multiplying together four
letters, one being taken from each of the four-factors. If we
examine the way in which the various partial products are
formed, we see that

(1} the term z* is formed by ta.kmg the letter o out of each
of the factors.

(2) the terms 1nvolv1ng «* are formed by taking the letter 2
out of zmy three factors, in every way possible, and one of the
letters a, b, ¢, d out of the remaining factor.

(3) the terms involving &° are formed by taking the letter
out of any fwo factors, in every way possible, and fwe of the
letters a, &, ¢, d out of the remaining Tactors.

{4) the terms involving x are formed by takmg the lett-er z
out of any one factor, and thres of the letters «, &, ¢, d out of
the remaining factors,

6{5) the term independent of « is the product of all the letters
a, b, ¢, d

Ezample 1. (z-2) (z+8) (x=5){z+9)
=g (= B+ 8 -54+0) 2+ {6+ 10-18-15+27 - 45) #°
+(30-54 +90 ~133) £+ 270
=4 528 — 47 ~ 69z + 270,
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Ezample 2. Find the coefficient of &° in the produet
{z—~3)(x+35) (=1} (z+2){z—8).

The terms involving 2% are formed by multiplying together the x in any
three of the factors, and two of the numerical quantities out of the two re-
maining factors; hence the coefficient is equal to the sum of the products
of the quantities - 8, §, -1, 2, -8 taken two at a thme,

Thns the required coeflicient

=-164+8-64+24-5+10-40-2+8-16
= - 39.

162. If in equation (1) of the preceding article we suppose

b=c=d=¢a, we obtain
(z +af =a* + 402’ + 62’2’ + 4z + o',

The method here exemplified of deducing a particular case
from a more general result is one of frequent occurrence ir
Mathematics ; for it often happens that it is more easy to prove
a general proposition than it is to prove a particular case of it.

We shall in the next article employ the same method to prove.
2 formula known as the Binomial Theorem, by which any binomial
of the form = + & can be raised to any assigned positive integral
power. '

163.  To find the expansion of (x+a) when n is o positive
integer.
Consider the expression
(m+ra){z+bi(e+c)..... {z + k),
the number of factors being 7=,

The expansion of this expression is the continued product of
the n factors, T+ g, 8+ 8, z+¢, ...... x+ &, and every term in the
expansion is of n dimensions, being a product formed by multi-
plying together = letters, one taken from each of these n factors.

The highest power of = is 2", and is formed by taking the
letter @ from eack of the n factors,

The terms involving «** are formed by taking the letter x
from amy n—1 of the factors, and one of the lettersa, b, 6, ... &
from the remaining factor; thus the coefficient of z*7' in the
final product is the sum of the letters a, b, ¢, ...... k; denote it
by &,.

The terms involving 2"~* are formed by taking the lstter «
from any n— 2 of the factors, and fwo of the letters o, b, ¢, ... &
from the two remaining factors; thus the coefficient of 7% in
the final product is the sum of the products of the letters
a, b, ¢, ... k taken two at a time; denote 1t by §,.
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And, generally, the terms involving ™" are formed by taking
the letter = from any n—r of the factors, and ~ of the letters
a, b, ¢, ...k from the » remaining factors; thus the coefficient of
& in the final product is the sum of the products of the letters
a, b, ¢, ... k taken r at & time; denote it by 5.

The last term in the product is abe ... &; denote it by 5.
Hence (w+a)m<d){a+o)...... (z+ k)

="+ S+ ST L ST S w4+ S
In 8, the number of terms is n; in S, the number of terms is

the same as the number of combinations of » things 2 at a time;
that is, "C,; in §, the number of terms is “C; and so on.

Now suppose &, ¢, ... 5, each equal to &; then §, becomes
"C,a; 8, becomes "Ca*; S, becomes "C,a’; and so onj thus

{pta)y=a+"Caa™ + "0’ " +"C a2+ . +°Ca’;
substituting for *C, "C,,... we obtain
_— n(n—l} r— n{n—1)(n-2) e
1.2 1.3.3

the series containing n+ 1 terms.

This is the Binomial Theorem, and the expression on the right
is said to be the expansion of (z + a)".

®

(m+a)'= 2"+ nax £+ an

164. The Binomial Theorem may also be proved as follows:

By induction we can find the product of the = factors
w+a, £+b, @+e ... 2+ k as explained in Art. 158, Ex. 2; we
can then deduce the expansion of (z+ )" as in Art 163.

165. The coefficlents in the expansion of (x+ a,) are very
conveniently expressed by the symbels "C\,, "C,, "C,, ... "C,.
We shall, however, sometimes further abbreviate them by omxttmg
n, and writing €, C,, C,, ... ¢, With this notation we have

(wta)f ="+ Cax" 7+ Ca' e+ O™+ ... + C o™

If we write —« in the place of @, we obtain

(-a)=a"+C0 (~a)2" '+ O, (- )2 "+ O (= a)’ o+ ..+ (~a)"
=o' — Clo™™ + O o™ — Ca®e™ 2+ L+ (~ 1)°C 2"

Thus the terrns in the expansion of (x+a)* and (x— o) are

numerically the same, but in (- «)" they are alternately positive

and negative, and the last term is positive or negative according
as n is even or odd.
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Ezample 1. Find the expansion of (£ 4)5.
By the formula,
{4 y) =2+ 50, 2% + O, 2ty® 4+ 80, 2%y + 50, 2yt + 80, cy® -+ 10, Y0
=8+ By + 15xty? + 20082 + 152%4+ 6y + 4%,
on ealeulating the values of 507, 8C,, 8¢, ..........

Ezample 2. Find the ezpansion of {a - 2z)7.
{a - 2z) = a7 - 7C of (22) + 70, a® 2z - 70, a* (22 +...... to 8 terms.

Now remembering that "¢, =*C,__, after calenlating the coefficients up to
7(;, the rest may be wriften down 2% once; for 7€, =70,; 70 =7C,; and 50 on,
Hence

U‘i

,I g g o L ALE S
— Tab (22) +2a® (9)7 ~ 350k (22)* + 85a? (326
— 2La® () + Ta ()8 — (22)7
— ldobz + 84a%2? — 980asz8 + §60a’z4
’ — B79a%5 + 44Bar? — 12827,

(@ - 927 — a7 - Ta (22) + ?__

Ezample 3. Find the value of
{a+ @B 1Y +{a— JaF =T

We have hera the eum of {wo expansions whose {erms are numerically
the same; but in the second expansion the second, fourth, gizth, and eighth
terms are negative, and therefore destroy the cortesponding terms of the fimt
expansion. Hence the value

=2 {a7+21a® (a? - 1} + 3da® (@*~ 1)*+ Tz (a® - L%}
=32a (B4ef - 112a* + 5627 - 7).

166. In the expansion of (x + )", the coefficient of the second
term is "C,; of the third term is *C; of the fourth term is °C,;
and so on; the suffix in each term being one less than the
number of the term to which it applies; hence *C, is the co-
efficient of the (r+ I} term. This is called the general term,
because by giving to o different numerical values any of the
coefficients may be found from *C,; and by giving to = 2nd &
their appropriate indices any asss.gned term ma.y be obtained.
Thus the {r+ 1}t term may be written

nin-1}(n-2) ...(n—-r+1)
) £
In applying this formula to any particular case, it should be

observed that the index of a 43 the same as the suffix of C, and
that the sum of the indices of x and a is 1.

e v

"0, o
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Ezample 1. Find the fifth texm of {a + 2317,

The required term =10, ol3 (2z%)4

_17.16.15.14 Loy

1.2.8.4
=388080a £ 1%
Ezomple 2. Find the fourtsenth ferm of (3 —a)5.
The raguired term =0 (8~ a)?®
=V, % (~ 9% [Art. 145.]
= - 045al%,

167. The simplest form of the binomial theorem is the ex-
pansion of (I +z). This is obtained from the general formula
of Art. 163, by writing 1 in the place of «, and & in the place
of @. Thus

Q4+ay=1+"Ca+"Ca’+ . +"Ca+ .. +7Ca"

_ =1+wx+?—?'(1%1-—)m”+......+:c";
the general term being

n(n-1)(n~2).. .. ('n.m'r+1)x,'

The expansion of a binomial may always be made to depend
upon the case in which the first term is unity ; thus

(o +y) = {:n (1 + %)}-
¥

=a™1 + z)*, where z= =

Ezgmple 1. Tind the coefficient of x1¢ in the expansion of {z7 — 2)%,
9410
We have (z* - 22)lma®® (1 - 5) ;
o 1
and, since +® multiplies every term in the expansion of (1 - 5) , we have in
oL
this expansion to seek the coefficient of tha term which containg pr

Hence the required coefficient =104, (- 24

_10.9.8.7><
T1.2.3.4

=3360.

16

In some cases the following method is simpler.
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- Example 2. Find the coefficient of «* in the éxpansion of (z9+ :3) ",
Suppose that 27 occurs in the (g + 1) term.

Topenpios  rgytes (1)
="y g5,
Bot this term containg o, and therefore 2n— fp=r, or ?=2ns— r

Thue the required coefficient="Cy =", _,
s
fn
PN N
l_ v} |:
5(.;:: ) 5(3n+r)

r. S . . .
1s & positive infeger there will be no term containing 27 in

2n-
Unless Z

the expansicn.

168. In Art. 163 we deduced the expansion of (z+«)" from
the product of n factors (¢ +a)(x+58)... (w+1), and the method
of proof there given is valuable in consequence of the wide gene-
rality of the resuits obtained. But the following shorter proof of
the Binomial Theorem should be noticed.

It will be seen in Chap. xv. that a similar method iz used
to obtain the general term of the expansion of

{@+d+e+..... 0"

169, To prove the Binomial Theorem.

The expansion of (z+ ) is the product of » factors, each
equal to » + @, and every term in the expansion is of » dimen-
siong, being a product formed by multiplying together n letters,
one taken from each of the n factors. Thus each term Involving
#*~"a" 1s obtained by taking a out of any r of the factors, and
out of the remaining =n—r factors, Therefore the number of
terms which involve #'~'a” must be equal to the number of ways
in which » things can be selected out of n ; that is, the coefficient
of *~7a" is *', and by giving to 7 the values 0, 1, 2,3, ... nin
succession we obtain the coeficients of all the terms. Hence

(m+of=o"+"Cx s+ 0o+ .. +"0d + ... + 4,

since "C'; and "C_ are each equal to unity,
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EXAMPLES., XIII, a.
Expand the following binomials:
1 (z-3) 2. (3x+2yt 3. (2z-g).
4 (1-3a%" 5 {*+xf 6. (I—ayV.

B3z o6 2\T

7. ( --—2—-) . 8. (3&-:-3) . 9. (l+ 2) .
’ 2 LR 1 5 110
(ﬁx"i%> . 11. (§+Ios) . 12. (1-x) .

Write down and simplify :
13. The 4™ term of {x— 5}1% 14, The 10'" term of (I — 2z)12
15. The 12 term of (2z—13%. 16. The 28® term of (5x+ 8y)®.

jtil
17. The 4® term of (g + 9&)

B
18. The 5™ term of (Qa _ %) .

B
19. The 7% term of (4; - 3) .

2

3 58

20, The 5% term of <£i _'?/_s> -
a B2

Find the value of

21, (z+./2+ (x-S 20N 22, («/x'*‘ ¥+ )8 s/xg—a’a-—z:ﬁ
23, (J2+I1P=(J2-1)% 24 -T2 +24+VI—ap

10
95, Find the middle term of ( z)

14
26. TFind the middle terrn of (1 —%’) .

13
27, Find the coefficient of 218 in (.2:3+3§') .

8

Find the coefficient of #18 in {axt— ba)P.

15
29, TFind the coefficients of 2% and -7 in ("‘"‘{1.3) .

a0
30. Find the two middle terms of (3a~%) .
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. . ! 1he
31. TFind the term independent of = in 52~ 52) -

39, Find the 13% term of (9,»- _1_)”'
3.Jr

33. If .27 occurs in the expansion of (.z:+§‘)“ , find its coefficient.

s
34. Find the term independent of »in (a:— }5) .
X

. n
35, If 2P occurs in the expansion of (1:+%) , brove that its co-

. , 25
efficient is —

ié {(4n—p) 1}3 (2nt+p)

170, In the expansion of (I + x)* the coefficients of terms equi-
distant from the beginning and end are equal.

The coefficient of the (r + I)*® term from the beginning is
,Cr-

The (»+ 1)™ term from the end has n+ I—(r+1), or n—#
terms before it; therefore counting from the beginning it is
the (m—r + 1)'® term, and its coefficient is "C,_, which kas been
shewn to be equal to "C. [Art. 145.] Hence the proposition
follows.

ITl. To jind the greatest cocfficient in the ecxpansion of
BECES95

The coefficient of the general term of (1 +4)* is "C,; and we
have only to find for what value of r this is greatest.

By Art. 154, when n is even, the greatest coeflicient is *C_;

x
and when n is odd, it is "¢/, or *C_,,; these two coefficients

E]

being equal.

172, To find the yreatest term in the expansion of (x +a)

We have {2+ a) = (1 + f) ;

T
) .. : Nt oL .
therefore, since z" multiplies every term in (1 + ;) , it will be

sufficient to find the greatest term in this latter expansion,



144 HIGHER ALGEBRA.

Let the % and (r+ 1)® be any two consecutive terms,
The (r+1)™ term is obtained by multiplying the +® term by

n-—r+1 « ; n+1 @
7T 25 that is, by (—?--- - 1) . [Art, 166.]
%+ 1 .
The factor -—1 decreases as » increases; hence the
{r+1)" term is not always greater than the % term, but only
. i
until (?H: - I) S becomes equal to I, or less than 1.
Now (n”+_1 - l) 2. 1,
r x
so long as %+1—1 f,
r 2]
that is, n+l 2.9
7 i3
or Z +1 ORI ¢}
=+1
&

12 ntl be an ‘integer, denote it by p; then if r =p the
i1
a
multiplying factor becomes 1, and the (p + 1)™ term is equal fo the -
P'"; and these are greater than any other term.

n+1

If

be net an integer, denote its integral part by ¢;
i
a
then the greatest value of r consistent with (1) is ¢; lence the
(g + I} term is the greatest,

Bince we are only concerned with the numerically greatest
term, the investigation will be the same for (z-a)'; therefore
in any numerical example it is unnecessary to consider the sign
of the second term of the binomial. Also it will be found best
to work each example independently of the general formula.
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1
Example 1. If z=3, find the grestest ferm in the expansion of (1 +4x)8

Denote the #** and (r+ 1)*® terma by T, and I, respectively; then

3_
T =224
-r 4
== %3* T
hence Tra> Ty,
—r 4
50 long as 9--,_-: ®g=>1;
that is 36 —4r>3r,
or 36T,

The greatest value of r consistent with this is 5; henca the greatest torm
is the sixth, and ifs value

433 4N 57344
& i 2\ Bies
=805 (3) Cs x (3) %43

Ezample 2. Find the greatest term in the expansion of (3 - 2} when

z=1

(8- 2z)9=3° (1 - 23_”)9;

D\ 9
thns it will be sufficient to consider the expansion of (1 - f) .

3
Here T,.4_1=9ﬁ:+1 . g,;x T, numerically,
=10:r « ngr;
henca . Topy» T,
20 long &8 lof_rxgb-l;
that is, 20> Br.

Hence for all values of r up to 3, we have T, > T,; but if r=4, then
Tpp=T,, aud these are the greatest terms. Thus the 4 and 5 terms are
mmerically equal and greater than any other term, and their vaiue

o\
=P x20, % (g) =38 84 x 8=480884,
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173. Yo find the sum of the cogfficients in the expansion
of (1 +x)",

In the identity (1+a) =1+Cz+ 0+ 02"+ ... +Ca",
put &= 1; thus
: P=l+C +C,+C+...+C,

=sum of the coefficients.

Cor, C+0,+C,+..+C =201,
that is ““the total number of combinations of » things” ie 2" -1,

[Art. 158.]

174, To prove that in the expansion of (1+x)", the sum of
the coefficients of the odd terms is equal to the sum of the coefficients
of the even ferms.

In the identity (1+2)"=1+C e+ 0o’ +0x*+ . + 02",
put &= —1; thus

0=1_0|+Cs_08+04—0§+ ...... 3
TR0+ 0+ =C\+C,+C,+......

=—i (sum of all the coefficients)
- 2!!—1.

175. The Binomial Theorem may also be applied to expand
expressions which contain more than two terms.

Brample. < Find the expansion of {z3+ 2z~ 1)%

Begarding 2z - 1 as a single term, the sxpansion
=@+ 3 () (2 — 1) + 829 (23 - 1)+ (2 — 1)
=8+ 628+ 9% — 4z ~ 922 4+ Bz~ 1, on reduction.

176. The following example is instructive.

Ezample, If {l4zfr=cytomtegd+ ...+, 00,
£ind the value of Co+ 20, + Bog+ Aoy + .. F{REL} G {1,
and o + 26,04+ ey + ... FReRd e (8

Tha ser}'eﬁ L}=leo+¢, tet. +0u) 4 {6+ 205+ Beg+ o+ uicy)

e A {1+(n—1}+("l-——g—(§:~g}—+ ...... +1}
=2n (14 Lyt '
=Dy, 201
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To find the value of the series (2), we proceed thus:

e+ 20,88 +3e, 224 L. +ne, 2t
=nz {1 +-Ya+ "‘;il(;_:i‘l B+ x,._l}
=ng {1+,

henee, by chauging & into %‘_, we have

£1 %:3_‘. 3:?-‘ ey _ R Iy
= + 2 Tt et =z 1+; cevaaene {B)e
Also Cot Oy E etk et =l b ()

If we multiply together the two series on the left-hand sides of (3} and {4},
we see that in the product the term independent of = i3 the series {2); hence

. : .on Iyt
the series (2} =term independent of z in E {(L+x)® (1 +E)
=term independent of £ in % {1+ zp2et

=coefficient of 2™ in n {1 + )01
=nx 0,
[2n-1

=|n—_1 m-1"

EXAMPLES. XIIT, b,

Ir: the following expansions find which is the greatest term:
1, (r—3%* when =11, y=4.

2. (2% —3y)» when x=9, y=41.

3. (2a+b when a=4, b=5.

4 (34+22)% when x=%.
In the following expansions find the value of the greatest term:

5. (142) when o=

37 n==6.
1 1
6. (a+z)" when a=g, F=3z, =0

102



148 HIGHER ALGEBRA.

7. Shew that the coefficient of the middle term of {1423 ia
equal to the sum of the coefficients of the two middie terms of
{(L+apn-L

8. If 4 be the sum of the odd ferms and B the sum of the
gven terms in the expansion of {x+a)*, prove that 4%~ 5%=(2?-a®}".

9, The 2°, 37 4% terms in the expansion of {z+z)" are 240, 720,
1080 respectively ; find z, ¥, .

10. TFind the expansion of (14222}t
11. Find the expansion of (3% —2¢x+3a?f.
12. TFind the +* term from the end in {x +a)™
2n+1
13. Find the (p-+2)™ term from the end in (x-— le) ,
14. In the expansion of (1+ %)% the coefficients of the (2r+1)" and
the {r+ 2)™ terms are equal; find 7. '

15. Find the relation between r and # in order that the coefficients
of the 3r and {»+ 2)® terms of (1+£)** may be equal.

16. Shew that the middle term in the expansion of (1 +4)% is

1_.3.5...(2%—1}

[_’f Gngr

If ¢y, é1, Gy --- €, dénote the coefficients in the expansion of (142,
prove that

17, e, +2c+3e5+..... +no,=n.2%"L

0 L % N Lt §
18 g g gt T T
19, Gy Py, o e _nlatl)
& 6 O Camy 2

20. (cl)'l'cl) (61+C.2).._.‘.(Gﬂ_1+c“)=-I—-“;—"“'l "__

e
g B, 2% gntl,  Feutl_]
1. e, NG Nt VU Phup . JT G
TR Sk Al w4l
2 2 2 'IZ?E
22, o+ ecftoli+.. +Cﬁ2=l_”';£"?_"
2

23, ColeH-0\Crs 1 g0y g F oo O By = o o
7|k



CHAPTER XIV,
Brvomiar THEoREM., ANY INDEX.

177. Ixn the last chapter we investigated the Binomial
Theorem when the index was any positive integer; we shall now
consider whether the formulse there obtained hold in the case
of negative and fractional values of the index.

Since, by Ark 167, every binomial may be reduced to ome
sommon type, it will be sufficient to confine our attertion to
binomials of the form (1 +2)"

By actual evolution, we have

i‘ T 1 1 E] 1 ] .
I+ =vita=lesm—ga®b = .. ;

and by actual division,
(1—-2)"= --—L—-3= 1420+ 32"+ 4+ ... ;

(1-2)
[Compare Ex. 1, Art. 60.]

and in each of these series the number of terms is unlimited.
In these cases we have by independent processes obtained an
L
expansion for each of the expressions (1 + )" and (1 +z)™*. We
shall presently prove that they are only particular cases of the

general formula for the expansion of (1 +&)", whers » is any
rational quantity.

This formuls was discovered by Newton.

178. Suppose we have two expressions arranged in ascending
powers of 2, such as

b (m -:1) w2+ ‘?fr, (m - 1) {'m.. — 2) xg +

il — T (1),

- ..

14 mx+

n (n
1.

])x!-}.n {(r— )(n—ﬂ) &t {2).

and 1+ nx + 1573

kol |
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The product of these two expressions will be a series in as-

cending powers of x; denaote it by
L+ de+Bal+ O+ Dt + ... ;

then it is clear that 4, 5, C, ...... are functions of s and #,
and therefore the zctual values of 4, B, ', ...... in any particular
case will depend upon the values of m and n in that case. But
the way in which the coefficients of the powers of 2 in (1) and (2)
combine to give 4, B, {, ...... is quite independent of m and = ;
in other words, whatever values m and n may have, A, B, C, ..., .
preserve the same invariable form, If therefore we can determine
the form of 4, B, O, ...... for any value of m and n, we conclude
that 4, B, C, ...... will have the same form for «ll values of m
and z.

The principle here explained is often referred to asan example
of “the permanence of equivalent forms;” in the present case we
have only to recognise the fact that in any alyebraicul product the
Jorm of the result will be the same wlether the quantities in-
volved are whole numbers, or fractions ; positive, or negative.

We shall make use of this principle in the general proof of
the Binomial Theorem for any index. The proof which we
give is due to Euler,

179, To prove the Binomial Theorem when the index i a
positive fraction,

Whatever be the valuwe of m, positive or negative, emieyral or
Fractional, let the symbol f{m) stand for the sories

mim—1) , mm-1)(m-2) ,
_-].-_-_2._.. g . ¥

1 +me+ 17373 a+ .

then f(n) will stand for the series

— - —
If we multiply.these two series together the praduct will ho

another series in ascending powers of a;, whose eonfficients will e
wnaliered in form whatever m and n. may be.

P+ e+

To determina this invariable form of the product we may give
to m and n any values that are most convenient; for this parpose
suppose that s and » are positive integers. In this case /{(m)
is the expanded form of (1 + =)™, and f(xn) is the expanded form of
(1 +z)"; and therefore
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F) < flmy={1+z)" x {l+2)"=(1 +x)"*,
but when m and » are positive integers the expansion of (1 +wy™**

is L+{m+n)a+ (M(Ei—f:})x’+

This then is the form of the product of F(m) x f(n) in all
cuses, whatever the values of m and » may be; and in agreement
with our previous notation it may be denoted by #{m +n); there-
fore for all values of m and n

J ) x f(n)=flm+a)
Also Sm) < f{m) x F(p)=f (m+m) x f(p)
=F{m+n+p), similarly.
Proceeding in this way we may shew that
J(m)x F(n) x f{ p)...to & factors =/ (s + 2 + p +...t0 k terms).

Let each of these guantities m, =, p, ...... be equal to é,

where A and k are positive integers ;

L) ~rms

but since 4 is a positive integer, /(&) = {1 + x)*;

-0
(1+ m)‘!=f(§);
but f (i—:) sltands for the series
k sk

ROENE

1+-x+_......__2x“+ ......

o h
(11-9:;=1+-La:+1._2x+ ...... ,
which proves the Binomial Theorem for any positive fractional
Index. '
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180. To prove the Binomial Theorem when the tndex is any
negalive guantity.

Tt has been proved that
Jlm) = f(n) =f (m+n)

for all values of w and #. Replacing m by —« (where n is
positive}, we have

Sy xfm)=f{-n+mn)
=/ (0
=1,

since all terms of the serieg except the first vanish ;

- =l

but f {n) =-(1 + z)*, for any positive valueof n ;

1
T =f(-n),
or (1 +z) " =Ff(—n)

But #(—n) stands for the series

(_”) (_’ﬂ’ml) 1

1+(—n)m+—-——1~'~2——-m+ ...... H
("ﬂ)( ’ﬂr“l) ¢

(l+z)y " =1+(-nyo+ —

which proves the Binomial Theorem for any negative index,
Hence the theorem is completely established.

181. The proof contained in the two preceding articles may
not appear wholly satisfactory, and will probably present some dif-
ficulties to the student. There is only one point to which we
shall now refer,

In the expression for f{m} the number of terms i finite when
m i§ a positive integer, and unlimited in all other cases. See
Art, 182, Tt is therefore necessary to enquire in what sense we
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are to regard the statement that f(m) x f(n) = f(m+n). It will
be seen in Chapter xxi, that when a <1, each of the series /. m),
fn), f(m+n)is convergent, and f(m + n} is the trne arithmetical
equivalent of #{m) xf(n). But when z>1, all these series ate
divergent, and we can only assert that if we multiply the series
denoted by f(m) by the sevies denoted by f(n), the first r terms
of the product will agree with the first » terms of f{m +n),
whatever finite value » may have. [See Art. 308.]

3 -
Ezample 1. Expand (1 - z)* to four terms.

373 373 3
i) 56 6)
(-ai=ltg (- ) vy (- AP+ —1 57—

3 3 .1
_1—§x+§x +i-g$a+ .....

Example 2. Txpand (2 +32)7% to four terms.

2 +3z)~4=2-¢ (1+%’:')_‘

Y PRI E T Ve INCUTELIEL TS

_ 1 45 s 135 3
=1 (1*63‘{'?-% -"2—:5 T ).

182, Im finding the general term we must now use the
formula

nn~-1y{n-2)...... (n-r+1) ,
I @
written in full; for the symbol *C can no longer be employed
when # 1s fractional or negative.

Also the coefficient of the general term can never vanish unless
one of the factors of its numerator is zero; the series will there-
fore stop ab the ## term, when n—r+1 is zerc; that is, when
r=mn+1; but since r is a positive integer this equality can never
hold except wlhen the index » is positive and integral. Thus the
expansion by the Binomial Theorem extends to n+ 1 terms when
n is a positive integer, and to an infinite number of terms in all
other cuses.
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JlE

Ezample 1. Find the generel term in the expansion of {1+

1/1 1 1
H(A-n) (-2) o (ons)
k4
=B (=98 (=248
T
The number of factors in the numerator is +, and + -1 of these are nega-

tive; therefors, by teking --1 out of each of these negaiive factors, we may
write the above exyression

The (r + 1) term =

{—1)*—11;_3.'_5_;;‘;_{_21’;9

1
Ezample 2. Find the general term in the expansion of (1—nz)™

The {r 1 term = n (“*‘1) (“#2) (*-—T-'-l)

_1(1-u)(1-9m) ...... @l=r-1.n
= e

1(1-nj@A-20)....(l-r-1.%)

(—nz)r

(-1

(- =y

=Y @n-1 ... r-1-n-1)

ainge (=1 {-)i=(= 1= _1.

Ezample 3. Find the general term in the expansion of (1 - z)3

The {r + 1) term = (=8 (-9(-8 .. (5374 (-z)r

I

2(_1};-?,’_______'?- {?‘+2}( Yz

w8 4.B (D)

=ENT e AT
h—+1}( +3

by removing like factors from the numerator and denominator.
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EXAMPLES. XIV. a.

Ezpand to 4 terms the following expressions:

1 3 2
L (1422 2 1+ 3. (1-z¥.
1 R
4 (142" 5. (1-3aF. 6. (1-32)%
3
1 A -3 z
7. (1+25) % 8. (1+‘13:> . 9. (1+9—“’).
3
1y :
10. (l+5a) B 12. (9+2a).
N s 1
18, (8+12a). 14, (9-62)%. 15, (4a-82) %,

Write down and simplify :
.1
16. The &% terma of (1+-24) Z,

1
17. The 11* term of {1 — %23)%.

18, The 10* term of (14 30;"‘)%;.
19. The 5% term of (3a — 25) -1,
20. The {(r+1)® term of (1 —2)~%
21, The {r+1)* term of (1 —x)-4.

raler

22, The (r+1)" term of (142)%
n
23, The (r+1)® term of (1+2)%.
k]
24, The 14% term of (29— 272)2.

n
25. The 7 term of (3%4- 6tx)%,

183. If we expand (1-z) " by the Binomial Theorem, we
obtain
(1-—2)"=1+2e+32"+4u®+ ... ;
but, by referring to Art. 60, we ses that this result is only true
when 2 is less than 1. This Jeads us to enquire whether we are
always justified in assuming the truth of the statement
n(n—

n 1 o
(1 '1"&2) =1+ ne+ -——I-TE‘-'-).’I: + . y
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and, if not, under what conditions the expansion of (I +2)* may
be used as its true eguivalent,

Suppose, for instance, that n=—1; then we have
(I—2) ' =lrmsa’ +at+a*+ (1};

in this equation put z = 2; we then obtain
(=1y'=1+2+27+2%+ 204 .,

This contradictory result is sufficient to shew that we cannot
take
-1
(n-1) .,

1 L
+ a4 _‘1'—2 ......

&s the true arithmeticul equivalent of (I +)" in all cases.

Now from the formula for the sum of ‘a geometrical pro-
gression, we know that the sum of the first » terms of the
1-o
l-%

1 x

R pupet

and, when = is numerically less than I, by taking + suficiently

-

series (1) =

large we can make 'l—?——a—c as small as we please ; that is, by taking
a sufficient number of terms the sum can be made to differ as

little as we please from 1—1--. But when  is numerically

»

increases with », and therefore

greater than 1, the value of

no such approximation to the value of is obtained by taking

l-w
any number of terms of the series _
lre+a+2"+ ..,

It will be seen in the chapter on Convergency and Diver-
gency of Series that the expaunsion by the DBinowial Thesrem
of {1 +x)" in ascending powers of wis always arithmetically in-
telligible when « is less than 1. '

But if % is greater than 1, then since the general terin of
the series
ni{n-1) ,

1+ 2+ 1 2+ ...
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containg «’, it can be made greater than any finjte quantity by
taking » sufficiently large; in which case there is no limit to the
value of the above series; and therefore the expansion of (1 + )
23 an infinite series in ascending powers of z has no Ieaning
arithmetically intelligible when @ is greater than 1,

184. We may remark that we can always expand (z +y)"
by the Binomial Theorem ; for we may write the expression in
either of the two following forms:

n 3’ " L "
and we obtain the expansion from the first or second of these
according as z is greater or less than 4.

185, To find in its simplest form the general ferm in the
expansion of (1—x)= .
The {(r+ 1)*® term

= CR)=a-l{-n-2 .. (-rn~r+)

E {(~ay

crm+Dn+2) . (ntr-1)

={~1) a (- ye

nn+)(n+2) ... (n+r-1) |
a z
mm+s (a2 - l)af
4 ‘
From this it appears that every term in the expansion of
(1 — &)~ is posibive.

= (_ l)Br

Although the general term in the expansion of any binomial
may always be found as explained in Art. 133, it will be found
more expeditious in practice to use the above form of the general
};erm in all cases where the index is negative, retaining the
orm

afn-Dn-2)..(n-r+1}) -
r

only in the case of positive indices.
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' : : 1
Ezample. TFind the general term in the expansion of ﬁ .
1- -+
— — ={1 -3z "
NAP:” ( )

The (r+1)* term

=§ (%+1) (é—'rﬂ) ...... (% -E-fr—l) -

r
14T @YD,
B ST

| J—
14T (@r-2)
= i :

-l
If the given expression had been (1 +3z) ? we should have used the same
formuls for the general term, replacing 3x by —3z.

186. The following expansions should be remembered :

(l-2y'=l+z+a"+5°+ ..., B N
(L-2)P=1+2+ 3" +42®+ 000, +r+1)a+ ...
(1-x) =1 +3z+6a" +102°+ ...+ (T-Jr—}l)—(’gi?) €+

187. The general investigation of the greatest term in the
expansion of {1 +=)", when n is wnrestricted in value, will be
found in Art. 189 ; but the student will have no diffculty in

applying toe any numerical example the method explained in
Art. 172,

Example. Find the greatest term in the ezpangion of (1+z}~* when
z-_—.g_, and n==20.

- -1
We have Ty =%i_—:———- e x Ty, numerically,

19+4r 2
=5 xExT,;

o Ty = Ty
2 (1.9+7') =1,
dr
that is, 38>,
Hence for all values of » up to 37, we Lave T, ,>T,; but if r=2388, then

Ty =T1,, and these are the greatest terme. Thus the 38% and S0t termg
are equal numerically and greater than any other term.

no long ag
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188. Some useful applications of the Binomial Theorem are
explained in the tollowing examples.

Example 1. Tind the fivst three terma in the ezpansion of

1 1
(1432 (1 - 22) %,

Expanding the two binomials as far as the term containing % we have

(1+§.r—§z3—,,.) (1+Ez+§a:3+.,.)

2 B 3 9

3 2 L/8. 32 9
=1+“(§+§) e 9+§-3*§>
. 18 55,
_1+?x+,};§x.

If in this Example z= 002, so that «*= 000004, we ses that the third
term is a decimal fruciion beginning with 5 ciphers. If therefore we were
required to find the numerieal value of the given exypression correct to 5 places

of decimals it wounld be sufficient to substitute -002 for z in 1 +J'6—3 &, neglect-

ing the term inveolving x%.

Example 2. When x is so small that its square end higher powers may
be neglected, find the value of

g 4t
(1+.—x) + /4 + 2
2
NITERTY

Since z? and the higher powers may be neglected, it will be sufficient fo
yetsin the first two terme in the expapsion of each binoemial., Thersfore
1

2 n-f T\ 8
) (1+5z) -2 (1+§)
a 2
FaY
3(1"’-‘1)
10 1
(1—-‘3—-.‘!‘.‘ +2 (1+Z$)
F]
1 17 3N
1 17 3
=E(3H? )(1—[—.’.‘:)
1
8

the expression

the ferm invelving x? being neglected.
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Exzample 3, TFind the value of — to four places of decimals,

,Ji'?

To obtain the valnes of the several terms we proceed as followa:

731
7Y LA285T . e =

7} 020408

T) G0ZHLB. ..o

7 000418
00069t

PRI

il

A=

-

and we can see that the term 5 -]i is a decimal fraction beginning with

t\‘.‘r
--.'l

§ ciphers.

-—-—~_ 02915 + -00008
,Ji'? 142857 + 002915 + 000088

='14586,
and thig regult is correet to at least four places of decimele,

Exampls 4. Find the cubs root of 126 to & places of decimals.

1 1
{126)3 = (58 +- 133

sl 1111
=ttgemgoptecw
12 19 1w
=ha &2
= 1e T e te T

E _ '0003? 40 0000128

3 = TTHL
=5--*013338 ... - +000035 ... + ...
=5'11328, to five places of decimals.

=5
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EXAMPLES. XIV. b,

Find the (4 1" ferm in each of the following expansions

A 1
L (Q+a}® 2 (1-a)—% 3 (143
2 _3
4. (1+x) % 5 (+2%-% 6, (1-22) %,
7. (a+by)u. 8 (2-a)7% g, V=
1 1 1
. A= 11. LN . —,
1o J1Lox 3{1—3.’&')“ 12 M g

Find the greatest term in each of the following expansions :

13, (1+42)"7 when x={—;5~ .

z 2
4. (1+)? when =5

11

15. (1 —7a2) % when 1=é

16. (2o+5y)2 when =8 and y=3.

1
17. {5-42)"7 when x= 5
18, (3224 4% =" wheu =9, =2, n=14,

Find to five placos of decimals the valne of

19. o8 20, 998, 21. J1003. 22, ~'2400.
1 } -3 —
B. g % (Ldo¥. 25, (B30) % 28, Y3

1f = be so small that its squeare aud higher powers may be neglected,
find the vaiue of

! A . A -1
27. (1—7ap(1+24) L 28. 4 Th. (3_-:_, ) .
H (1+9 )_5 (44307
Ry * ., RY;
a9, ,.(_8_-‘._3';‘:__5__ . a0, 3 . .
(24 3a)Nd -5z (daap

H H.A 11
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;/ 1-2ea (1430}
—zat ( + .1:) NZwn YOG b
31 5\ 6/ @ g SOEONIOW
¥ o _F s a?
33, Prove that the coefficient of «* in the expansion of (1 —4a)

. |2
]a ———
(ir)y

Am_on ) -z n{ntl) P-ang
34. Prove that (1+a=2 -{] -5 M (1+x) ...... }

1
i

35. TFind the first three terms in the expansion of
1

36. Find the firat three terms in the expansion of
3 ————
1+ + Vit ba
(1 —a)?

37. Shew that the nth coefficient in the expansion of {1 —ay-% i
double of the (n— 1}t

188. To find the numerically grectest term in the expemsion
of {1+ 3V, jor any rational valus of 1.

Since we are only concerned with the aumarical value of the
grestest term, we shall consider & thiroughout as positive,

Case 1. Let n be a positive integer.
The {r+1)® term iz obtained by multiplying the +™ term
—7+1 . +1
by ??...___:‘_'f__. .x; that is, by (2}. - 1) @; wud therefore the

terms continue to Increase so long us

(EL 1—'1 - 1)::1-> 1;
”

frn+ 1)
=

that is, 1

or A



BINOMIAL, THEOREM. ANY INDEX. 165

o+ 1
1f -(—1—-4—_1)— be an integer, denote it by p; then if »=p, the
multiplying factor is 1, and the (p+ 1)® term is equal to the

2™, and these are greater than any other term.
fr+ 1)z
1 l+a

then the greatest value of » is ¢, and the {7 + 1)® term is the
greatest,

be not an integer, denote its integral part by ¢;

Case II.  Let = be a positive fraction.
As before, the (r + 1) term is obtained Ly multiplying the

v term by (ﬂ:— Lo l)m.

{1y If z be greater than unity, by increasing s the above
multiplier can be made ag near as we please to —«; so that after
a certain term each term is nearly x times the preceding term
numerically, ard thus the terms increase continually, and there
is no greatest term.

(2) If x be less than unity we see that the multiplying
factor continues positive, and decresses until r>n + 1, and from
this point it becomes negative but always remains less than 1
numerically ; therefore thers will be a greatest term.

As before, the multiplying factor will e greater than 1
solongas St P

If (n ++]) -be an integer, denote it iy p; then, as in Case L,

the (p + 1)% term is equal to the »%, and these are greater than
any other term,

It ﬂ.+1)

be not an integer, let ¢ Le its integral part; then
the (g + 1)“' term is the greatest. '

Case TTI.  Let » be negative,

Let n — —m, so that w is positive; then the nwmerical
C LomEr —1
value of the multiplying factor is “-- - ; that is

(-’-’E—_l + 1):1:.
r

11—2
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(1) If x be greater than unity we may shew, as in Case IT,,
that there is no greatest terni.

(%) If o be less than uuity, the multiplying fuctor will be
greater than 1, so long as

(m—-l + 1):.':3»];
o

that is et LS B
r
or m=l)= =7
l-z
{(m—-1)a= e .
It be a positive integer, denote it by p; then the

l—z
(p + 1) term is equal to the p™® term, and these are greater than
any other term,

It (ﬂa-l-_—lazf be positive but not an integer, let ¢ be its inte-

gral part ; then the (7 + 1)™ term is the greatest.

It (?ilh__la),ﬁ be negative, then m is less than unity ; and by

*
see that it is always less than 1: heunce each term is less thun
the preceding, and consequently the first term is the greatest.

A . I-
writing the multiplying factor in the form {1 —- -——T') @, we

190. o find the mumber of homogencous products of v dimen-
gions that can be formed out of the n lefters o, by ¢, ... and thewr
powers,

By division, or by the Binomial Theoren, wo have
1

T 1+ ae+a'e® + o+ ., ,

1 e 1 B3l 3.8
ey 1+t P2+ ... ,

1

ool O
1—c¢x
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Hence, by multiplication,
1 1 1
l—e 1=ba 1ex
=(lras e+ ) (Lhbw+ 5%+ ) (L rem+dav ).

=lag{etdrer +af (@ rabtac+ P bt )+

=1+82+82°+84°+ ... suppose;
where 8, 5, §,, ...... are the sums of the homogeneous pro-
ducts of one, two, three, .... . dimensions that can be formed of
a, by ¢ .. and their powers.

To obtain the number of these products, put a, b, ¢, ...... sach
equal to 1; each term in 8, ¥, S,,...... now hecomes 1, and the
valueg of S, 5,, 5, ...... s0 obtained give the muwmber of the
homogencous products of owne, fwe, three, ...... dimiensions.

1 1 1

..A.]S(} R T e

l—ax I-dbx 1-cx
becomes g Or {1 — &)™,
{1 —ay ( )

Hence W, = coeflicient of & in the expansion of (1~ )™
nme Dy n+3y . (n+r-1)

I

jr+r—1
B [r -1 "
191, 2o find the raumber of termy in the expansion of any
mulitnomiul when the index is « positive integer,
In the expansion of
. L
{re, + e+ a6, + oo, +a,)",

every term is of s dhmensions ; therefore the number of terns is
the same as the nmumber of homogeneous products of # dimensions
that can be formed out of the + quuntities «,, a,, ... &,, and their
powers ; and therefore iy the preceding article is equal to
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192, From the result of Arvt. 180 we may deduce o theorem
relating to the number of combinations of » things.

Consider = letters a, &, ¢, d, ......; then if we were to write
down all the homogeneous products of » dimensions which can be
formed of these letters and their powers, every such produet
would represent one of the combinations, » at & time, of the n
letters, when auy one of the letters might ocour once, twice,
thrice, ... up to » times.

Therefore the number of combinations of 7 things » at a time
when repetitions are allowed is equal to the number of homo-
geneous products of + dimensions which can be forimed out of n

w+r—-1
Ietters, and therefore equal to LT, ot g

That ig, the number of combinatious of ¢ things ¢ at a time
when repetitions are allowed is equal to the nunber of com-
binations of m+7~1 things » at a time when repetitions are
excluded.

123, We shall conclude this chapter with a few miscel-
lanecus examples.

{1 - 2)?
(ra)

The expression = (1 - 4o +42%) (L + 2 +pe7® + ... + 12" + ...} BUpDOHE,

Ezample 1. Find the coefficient of 27 in the expausion uof

The cocfficient of 2” will e obtained by maultiplying p., - 1. Prea by 1,
~4, 4 respectively, and adding the results; Lence

the required coefficient==p, ~ 4p._; -+ 4ps,_,.

r+1}{r4-2 .
But Po= (-1 (‘“_):E(‘t"'} X [Ex. 8, Art. 162.]

Hence the reguired ooeflicient

={-1)r (’_._+‘1}_3(T:2} —4(=1) ’_f”;_l_l d {12 l"'_j r

2

= —(;.}}: [+ 1) (e 2)+dr (r4- 1) 3 4r (v - 1))

_ -21_}_r (9r%4 3r42).
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Exzample 2. Find the value of the series

2.3 T (8.5 4.3
o 3.1 3.5.7 1 3.5.7.9 1
The expression _2—--|-2_- gt I it T -
8 & 3 57 34 7 38
2°2 2 Z°8'8 99 §°2°2°3 o
=247 = il -
Tt TET ET T U w

Exzample 3. If % Ia any positive integer, shew that the integral part of
{3 +,/7)" isan odd number,

Suppese I to dencte the integral and f the fractional part of (3 +,/7)™
Then  I+f=8%+0, 8% /7+ G, 8%, T4 Cy 38 (JTP+ ... ().

Mow 8 -,/7 ie posifive and less than I, therefore (3-,/7}" is & proper
{reetion; denote it by f';

S frEER e OB T R e T OB (TR LB
Add together (1) and (2); the irrational terms disappear, and we have
Ihf+7'=2(3"+ 03527+ .0}

=an sven integer.
But ginee f and f' are proper fractions their surm roust be 1;
.o F=an ¢dd integer.

EXAMPLES. XIV. c

Find the coefficlent of

. . 3-52
1. 2™ in the axpunsion of .
(1—aj
. . 4420 —e
2. a2 in the expansion of -K-_:&}::‘- .
322 - 2

3. & iu the expansion of

£ 4
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+
4. Tind the coetlicient of a* in the expansion of - U—:'I)T
5. Irove that
11 1.3 1 1.3.5 1 1.3.5.7 1 _\/2
1‘5'“"2422_246'2_* 9. 47§ 8 3
6. DProve that
3 3.3 3.5.7
A= — o4
S=leyt et T8l
7. Prove that
2n | In(2Zn+2) 2;;(2?1.-}—")(3»-1-4)
ah s
Mgt =yt 56,6
% w{n+l) ﬂ,(n, )e.+2) }
z‘) - - S -
_ ‘"{“’3* 5.6 T 3.,

8, Prove that
{1+ + (n—l)_l_ﬂ,(n—l)(ﬂ 2)+ }

(ST 71491
m n_n(n+1) (4&-}-1)(7@—}-2} }
=4 {”ﬁ* R e :

8. Prove that approximately, when & is very small,
1

3(x+4> 1—-3:2) o7

9 T,
1 4] i .2 (J
(*16 )

10. Bhew that the integral part of (52 J6)* is odd, if n be &
positive integer.

11. Shew that the futegral part of (8437 is odd, il » bo o
prositive integer.

12. Find the coefficient of 2* in the expansiow of
(1= 204 B2 = o)

L1
13. Shew that the middle term of (.1»4- %) i equal to the coofficiont

i,

of amin the exprasion of {1 — 443 (i

4 Prove that the expansion of (1-- 27 may be put inte the form

30 (3n~

3} o] A= 4
179 A=yl

(1__ )Sn_},g?“,r]_ Vt).in N Wk
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15. Prove that the coefficient of 2® ju the expansion .-~ -~ s
) . 14
1,0, —1 according us # Is of the form 3m, 3m—1, or 3m+ L.
16, In the expansion of (w+b+¢)¥ find (1) the pumber of terws,
(2) the sum of the coefticients of the terms.

17. Prove that if 2 be an even integer,
1 1 o 1 ) 1 o gn-tL
Tl B3 " Bm=s" " Tasipn T W

18, If ¢, e, 24y oonnen ¢, are the coefticients in the expansion of .
{14+a&)", when % iz a positive iuteger, prove thaf,
e !
(1) gy—g+om—o+an.. + (- 1re,=(-1Y _E-ﬁ‘:";;ll
(&) ¢—2¢,+30;— 4o+ ..en.e +(=17(n+1u,=0.

{3) CUE_‘012+622_U32+ """ +(_ ]_)“cnzzo! ur ( - 1)5'3'_‘3
aceording as 2 is odd ox even, ;

19. If s, denote the sum of the first » natural numbers, prove that

(1) (L-a) =3 +grtet+... gl
2n44
(2) (s 8pntsudyny d s + Sty = @2”‘_'.1
B o
20. If ¢.= %‘f '—é ﬁgh_“{%);;a}) » prove that

1
(1) Gns1 @19t Cuffan-at e +‘.{u—1‘1n+2+9u§{n+1'=§ .

(2) 2{¢fm— 11+ Lot oones +{= 1) nergn}
=gut(—1" 702

21. Find the sum of the products, two at a time, of the coefficients
in the oxpansion of (142", when a is a positive Integer.

22. If(7+43)=p+B, where n and p are positive integers, und g
& proper fraction, shew that (1 - 8)(p +8)=1.

23 If q € €hy oo ¢, are the coefficients in the expansiou of
(142)", where % is & positive integer, shew that

(—1n=le, . 1

e, [
b4 ]
P + e Jl- —— - e .
Tow Tty ) 23 @



CHAPTER XV.
Murrinomial, THEOREM,

194, 'Wg have already seem in Art. 175, how we may
apply the Binomial Theorem o obtain the expansion of a multi-
nomial expression. In the present chapter our object is not
so much to obtain the complete expansion of a multiuomial as
to find the coefficient of any assigned term.

Egample. Find the coefficient of a3 in the expansion of
{a+d+ct+d)

The expansion is the product of 14 factors each equel to a+ b+e - d, and
every term in the expansion is of 14 dimensions, being a produet formed by
taking one letter out of each of these factors. Thus to form the term a<h%345,
wa take a out of any four of the fourtesn factors, & out of any twe of the re-
maining ten, ¢ out of any three of the remaining eight. DBuat the number of
ways in which this can be done is clearly squal to the number of ways of ar-
ranging 14 letters when four of them must be e, two &, three ¢, snd five d;
that is, equal to

14

TEICILA

This ia therefore the number of. times in which the term @232 AppeLrs
in the final product, and consequently the coefficiont reyuired is 2622520,

[Axt. 151.]

195. 7o find the coefficient of amy aswigned term in the ex-
panston of (a+b+e+d+ .3, where p 12 a positive tnteyer,

The expansion is the product of p factors emch equal to
a+btet+d+ ..., and every term in the expansion is formed Ly
taking one letter out of each of these p fuctors; and therefore
the number of ways in which any term a=bferi® ... will appear
in the final product is equal to the number of ways of arranging
2 letters when o of them miust he @, 8 must bo b, y must be ¢;
and so on.  That is,

the coefficient of  wobfevff | ix - L?z e
[elBy[2-

where at+B+y+é+ o
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Cor. Tn the expansion of
(o+dm+ e + du* + .Y,

the term involving asblerd® ... ig
m—imet e (DR (extYY (Y
!EL‘BLV]__ (b} (e (du)® .

or L e atbBovdb | B

la [B |y |B Jy ]5

wlhere a+ S8+y+8+ ... =
This may be called the geeoral tern: of the expansion.

Ezample. Find the coefficient of * in the expansion of (a4 bz +ex?P.
The general term of the expansion is
19
e PP
SER Y | e (L
where a+ 8+ y=8

We have {o obtain by trial all the positive integral values of 8 and ~
which satisty the equation 8+2v=5; the values of a can then be found from
the equation atfiy=9

Putting y=%, we have =1, and a=¥6;
putting y=1, we have =3, and a=3J;
putting y=0, we have 8=5, and =4

The required cosfficient will be the sum of the corresponding values of the
expreseion (1).

Therefors the coefficient reguired

‘I—g__ [ i+ l - aq,u
]5 13 Ly

=252a%¢c? + §04at% + 128a‘b5.
196. T find the general term in the acpansion of
{a+bx+ex+dx"+ )
whers 1 i3 any rationel quandity.
By the Binemial Theorem, the general ferm is
e} =) Goprl) e
|z

where p is a positive integer.

(b4 o + d® -+ L),



172 HIGHER ALGERRA.

And, by Art. 193, the general tern of the expansion of

(b +ca® + da® + )

is L peevd GBIy

r')
Bl [2 -
where 3, vy, § ... are positive integers whose s is p.

Hence the general tern in the expansion of the given ex-
pression is

nirn-1Yn-2) ... (n—p=+1)
-

where Bry+8+ .. =p

@ P BBovdl | Bty

197. Since {@+ bz + e’ +dx’+ ..}* may be written in the
form

a" (1 +ém + Sy éx"-&— ) .
@ a a
it will be sufficient to consider the case in which the first term
of the multinomial is unity.
Thus the general term of
(I +bx+o+do®+ ...Y

nin-DN(n-2)... m-p+1) By +36 b
B bloyd® .. aftlytEt..

where Biry+d+ . .=p

is

Exanmple. Find the cosficient of #® in the expansion of
4
(1 -8z—25%+659)%

The general term is

200\ (2o0) (2.
3<3 1) (Tﬂ|2'9|3(1 p+1)(__:_0,8(_2)}'{ﬁj$mﬂi2y R

Wehave to obtain Ly trial all the positive integral valves of 8, v, § which
satisfy the equation 8+ 2+ 33=3; and then p is found from the equation
p=8+++48. The required coeflicient will be the sum of the corresponding
values of the expression {1).

o {1
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In finding 8, 7, &, ... it will be best to commence by giving to & successive
integral values beginning with the greatest admissible. In the present case
the values ave found to be

&

oy R
It

il

1 0, 0 1
0, 1, 1 9;
0, 0, 3 3

‘CQ'?‘O:

[l

2 2
It

3
8
Substituting these values in (1) the required coeffieient
2 ( 1) 4)
i 2 1 LT AN T
o) (Deacn L ey

4
3°

Il

]

4 4
=4—§-3_

198. Somstimes it is more expeditious to use the Binomial
Theorem.
Ezample. Find the coefficient of £* in the sxpansion of {1 - 22+ 32773

The required coefficient is found by picking out the coefficient of * from
the first few terms of the expansion of (L-2z-3z%~% by the Binomial
Theorem: that is, from

1+3 (23 - 827 + 6 (22 ~ 32%)° + 10 (27 - 82%)% + 15 {2 - 324,

we stop at this term for all the other terms involve powers of & higher
than zt.

The required coefficient=6, 9+10. 3 (2)2 (- 3) + 15 (2)4
= - 66.

EXAMPLES. XV.

Find the coofficient of

1. afichd in tho expansion of {m—b—e+d)%

&b in tha expansion of {a+d—e-df

.

@b in the expoension of (Za+ b+ 3e)
2232 in the expansion of («r = by + )
2% in the expansion of (14322227
2* in the expansion of {1+ 2%+ 320

2% in the expansion of {1+ 2x— 275

PRI B L

2% in the expansion of (1 - 2w+ 322 — &)t



174 HIGHER ALGEBRA.

Find the coefficient of
g, 2% in the expansion of (1 - a+ 37— wt— 2%

10. 4% in the expansion of {1—22+32%)

e

1

11, 43 in the expansion of (3 — B+ 3%~ 42?2
. _,vﬁ .‘t:"" -2
12, 2% in the expansion of (1 5+ ) .

13. s in the expansion of (2 - 4r+32%)2,

3

14, 2% in the expansion of (1+ 4a%-+ 1024+ 2020) 4.
15." 2'%in the expansion of (3 - 154%+1820)~1

1
16. Expand (1-2z-2%4 as far as 22
2
"17. Expand (14 32%-623) 3 as far as 25,

H
18. Expand (8 —92*+ 1824 gs far as 28
19, If (14+2+2%4...... +rPP =gyt aat a4, B T,
prove that
(1) epta+ay+...... +a,={p+1"
1
(2) o+ 2ay+3c+...... +%p.anp=§91p(p+'l)"‘,

20. If ag, @y, a, @y ... are the coefficionts in order of the expansion
of {1-4a+a%*, prove that

1
al—alral- ot +(- 1)"*1aﬁ_t=§a,, 1= (~1¥a,),
21. If the expansion of (1 +a+a3p
be gttt L a4 by, ath
shew that

Gyt ity bty + o= gty L = by L =3



CHAPTER XVI.
LOGARITHEMS.

199. Derrsrrion.  The logarithm of any number to a given
base is the indéx of the power to which the base must be raised
in order to equal the given number. Thus if a*=/¥, z is called
the logarithm of I to the base a.

Egzamples. (1) Bince 34=81, the logarithm of 81 to base 3 is 4.
{2) Since IMN=10, 10°=100, 10*=1000,......

the natural mumbere 1, 2, 3,... are respectively the logarithms of 10, 100,
1000,...... to base 10.

200. The logarithm of N to base & is usually written log, X,
so that the same meaning is expressed by the fwo equations

@ N; xulog V.
From these equations we deduce
— 08N
N o g %8

nn identity which is sometimes useful.

Ezample. Find the logarithm of 32.5/4 o base 2.,/2.
Let x be the roguired logarithm; then,
by definition, (2./2)7=32/4;
L (3. 231-"22". 2
ot og™,
27
5§75

L, 18
RS

hence, by equating the indices,

3-8,
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201, When it is understood that o particular system of
logarithims is in use, the suifix denoting the base is owmitted.
Thus in arithmelical culeulations in whieh 10 is the base, we
usually write log 2, log 3,...... instead of log 2, log, 3,......

Any number might be taken as the base of logarithms, and
corresponding to any such base a system of logarithms of all
numbers could be found. But before discussiug the logarithmice
systems commonly used, we shall prove some goeneral propositions
which are true for all logarithms independently of any particular
base.

203,  The logaritlon of 1 1s 0.

For a*=1 for all values of «; therefors logl =0, whatever
the base may be.

203.  The logarithwn of the base itwelf is 1.

For «' = a ; therefore log e=1. .
¥ Da

304, To find the logarithm of a product.

Tet MY be the product; let o be the base of the system, and
suppose
w=log M,  y=log N;

s0 that o =M, o =N
Thus the product MN¥N =a"wa
= ad“"‘l‘;

whence, by definition, log, MV =+ y
=log M + log N.
Similarly, log, MNP log, M + log, N + log, ;-
and so on for any number of factors,
Frample. log42=log (2x 3 x 7)
=log2+log B-+log 7.
208, o find the logarithan of o fraction.

ar

Let :f'v’ L the fraction, and suppose

z = log, M, y=log A"
so that a' = 4 o e IV,
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R ‘]. * F
Thus the fraction hiz ;-L
=@
tefinit M
whence, by definition, loy, ey

=log Jf —log, V.

Kxumple. log (45) =1og 570

=log30-log7
=log (2% 8 x5y -log 7
=log2+log3+log & ~log 7.
206.  To fiud the logarithm of a number ruised to any powsr,
integral or fractionel.
Let log,{M*) be required, and suppose
w=log, M, so that a"= M ;
then M= (a7
= ap‘;

whence, Ly detinition, log,(M") = p;

that is, log, {M*}) = plog, i,
i
Similarly, log, (M7) = ; log, M.

207, It follows from the results we have proved that

(1) the logarithm of a product is equal to the sum of the
logarithms of its factors;

{2} the logarithm of o fraction is equal to the logarithm of
the nuerator diminished iy the lngavithm of the denominator;

{(3) the logarithm of the ptt power of @ number is p thines the
logarithm of the number ;

{(4) the logarvithm of the +™ root of a number is equal to ith

of the logarvithm of the number.

Also we see that by the use of Jogarithms the operations of
multiphicetion and division may be replaced by those of addition
and subtraction; and the operations of Invelution amd evolution
by those of multiplication and division,

H. H. A. L2
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Example 1. Express the logavithm of N:F' in terms of log o, logd and
loge.
#
N at
log G 2 =log oot
)

=log a¥ - log (")

3 2
=3 loga— (log ¢*- log %
3
=§loga ~5loge—2logd.

Ezample 2. Find x from the equetion a®. ¢~ =it
Taking logarithms of both sides, we have
aloga~2xloge={3a+1)logd;
% {loga—2loge-3logly=logl;

_ logb 9
Tloga-2logc-3logh’

EXAMPLES. XVLa. .
Find the logariths of
1. 16 to base +/2,and 1728 to base 2.,/3.
2. 125 to base 5./5, and -85 to base 4.

3. 2:} ¢ to base 2,/2, and -3 to base 9.

0625 to baso 2, and 1000 to base 01,
0001 to buse *00L, and 1 to base 9,/3,

S 4R K
8. \/aﬁ - ,\/aﬂtobn.%u

7. Find the value of

Jog, 128, 10555}1- . ]”b’-m: log, .46,

Express the following seven logarithus in terms of loge, logh, apd
loge.

8. log(~aiRy, 9, log{#a?x HD0). 10. log(a—4%.
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11 log(Wa 2 x Vab=3), 12, log(Wa T+ E5 ).
NPT ) .~y =3 — 1% 8
13, log -~ 14, log {G’éﬁ) - ( {;—“3) 2
(o&‘lb'fc“‘)ﬁ 4 Y%
95,92 _1 0?1
15. Show that log ; Iis J_é =3 logs—-= logl -2 log 4
16. Simplify log'\/ 729 /e 91,973,
17. Prove thut lov' -2 log +l<)g 53 3__ luge,
Solve the following equations:
18. ar=clr 19, o™ be=¢
ar*tl 21, o Pv=mb
20. 1T i ]2 =mm} -
22, If log(a%?)=u, and 10g§=b, find logwx and logy. I
23, If u¥~% br=g=+8 {73, ghew that alog (%) =loga.
24. Bulve the equation
(6 ~ 2P 4 b= Lim (1t — DY { - b)~ .
Comnorn Louaririovs.
208, Logarithins to the base 10 are called Common Logar.

ithms; this system was first introduced, in 1618, by Driggs, a
contemporary of Napier the inventor of logarithms,

From the equation 107~ ¥, it is evident that conunon logar-
ithms will not in general be integral, and that they will not

always be positive,

For instance

3104 > 10 and < 107;
. log 3154 =

3 ¢ a fraction.

122
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Again, 06 =107 and < 107";
' , log 06 == + & fraction.
209. DygrisirtoN.  The integral part of a logaritlun is colled
the characteristic, and the decimal part is called the mantissa,

The characteristic of the logaritlun of any number to the
Lase 10 can be written down by inspection, as we shall now shew.

510, T'o defermine the chuaruacieristic of the logerithm qf wny
aapmber yreater than wnity.

Binee 10" 10,
107100,
107 - 1004,

it follows that a number with two digits in'its integral part lies
between 10' and 107; a number with “three digits in its integral
part les between 10‘ and 10°; and so on. Hence a number
with = digits in its integral p&rt lies between 10" and 10"

Let N be a number whose integral part contains = digits;
then
1 %=1 a feection
N=10 H

. log V== (n - 1} +a fraction,

Hence the churacteristic is » — 1 ; that is, the characteristic of
the logurithm of @ wuwnber greater than unity is lews by one thun
the number of digits in it integral part, and g positive.

211. o determine the characteristic of the logarithm of o
decimal fraction.

Biuce -1,
1
P
10 10" 1,
1
- L o=
10 =~ {0 01,
1072, -—-1 =001
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it follows that a decimal with one cipher immediately after the
decimal point, such ag 0324, being greater than 01 and less
than -1, lies between 107° and 107°; a numnber with two ciphers
after the decimal point lies between 107" and 107%; and so on.
Hence a decimal fraction with n ciphers immediately after the
decimal peint lies between 107" and 107",

Let D be a decimal beginning with 2 ciphers; then

] - 13 + a frack:
D=10 (2+1) + a frae ons

o log D==—(n + 1) + & fraction.

Hence the chavacteristic is - (uw + 1} ; that is, the characteristic
of the logarithin of a dectinal fraction is yreater by wnity than the
number of ciphers {mmediatsly after the decimal point, and is
negative,

212, The logarithms to base 10 of all integers from 1 to
200000 have been found and tabulated ; in most Tables they are
given to seven places of decimals. This is the system in practical
use, and it has two great advantages :

(1} From the results already proved it is evident that the
characteristics ean be written down by inspection, so that only
the mantisste have to be registered in the Tables,

{2} The mantissie ave the same for the lognrithms of all
numbers which have the same significant digits; so that it iz
sufficient to tabulate the mantisse of the logarithms of {niegers.

Thiz proposition we proceed tn prove.

213, let ¥ be any pumber, then since multiplying or
dividing by a power of 10 merely alters the position of the
decimal poipt without changing the sequence of figures, it follows
that ¥ = 10%, and ¥ = 10% where p and g are any integers, are
nunbers whose signiticant digits are the same as those of &,

Now  log (¥ x107)=log ¥ +plog10

=log Napo (1)
Agnin, log (N +10%=log ¥ —qlog 10
=log N—q . (@

In (1) an integer is added to log ¥, and in (2) an integer is
subtracted from log ¥; that is, the mantissa ov decimal portion
of the logarithm remains unaltered,
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In this and the three preceding articles the mantisse have
heen supposed positive. In order to secure the advantages of
Briggs’ system, we arrange our work so as afwuys 2o keep the
mantissa positive, so that when the mantissa of any logarithm
has been taken from the Tables the characteristie is prefixed
with its appropriate sign according to the rules already given.

214. 1In the case of a negative logarithm the minus sign is
written over the characteristic, and not before it, to Indicate that
the characteristic alone is negative, and not the whole expression.
Thus $-30103, the logarithm of -0002, is equivalent to 4 + -30103,
and must be distingnished from — 4-30103, an expression in which
both the integer and the decimal are negative. In working with
negative logarithms an arithmetical artifice will sometimes be
necessary in order to make the mantissa positive. . For instance,
a result such as —3:69897, in which the whole expression is
negative, may Dbe transformed by subtracting 1 from the
characteristic and adding 1 to the mantissa. Thus

~ 369897 = — 4 + (1 — -69897) =4-30103.

Other cases will be noticed in the Examples.

Fzample 1. Required the logarithm of -0002432.

In the Tables we find that 3859836 is the mantisss of log2432 (the
decimal point us well as the characteristic being omitted); and, by Art. 211,
the characteristic of the logarithm of the given number 8 —4;

. log 0002432 = 4-3850656.

Ezample 2. Find the value of .'2/ -QU0B0LES, given
log 165 =2-2174834, log 697424 = 5-8434008,

Let & denote the value required: then

1
tog #=log (-00000165)% = ! log (00000165}

7

= % (F2174889) ;

the mantissa of log -00000165 Veing the same ss that of Iog 165, and the
characteristic being preficed by the mle.

Now (&2174339):; (TN 4 4:2174839)

=

=2-8434908
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and ‘8434968 iy the mantissa of log 607424; hence x ix a number consisting

of these same digits but with one cipher after the decimal point, [Avt. 211.]
Thus & ="0897424.

915. The method of calcnlating logarithms will be explained

in the next chapter, and it will there be seen that they are first

found to another base, and then transformed into common loga-
rithms to base 10.

It will therefore be necessary to investigate a metlod for
transforming a system of logarithms having a given base to a
new system with o different base.

216, Suppose that the logarithms of all numbers to base o
are known and tabulated, it is reguired to find the logarithms
to base D,

Let & be auy number whose logavithm to Tase & is re
quired.

Let # = log, N, so that I =X;
log, (6") = log, ¥
that is, ylogh = 10g..N ;

1 v
y= E-_g:b x log, ¥,

1 .
or | log, ¥ = ogh xlog NV .. (1).

Now since ¥ and b are given, log, N and logh are known
from the Tubles, and thus log, ¥ may be found.

Hence it appears that to transform logarithms from bhase
. 1 ..
to base b we have only to multiply them all by Toad’ this i a

constant quantity and is given by the Tables; it is known as the
madulus.

217. Tu equation {1} of the preceding avticle put « for &V,
thus

1 ! % log !
o (= L
o8 log b B Tog B’

o logee < logh = 1L
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This result may also be proved directly as follows:

Let . x-=logh, sothut ™ =1;
then by taking logarithms to base b, we have

aloge =log)h
=1;
logh x log,e =1.

218, The following examples will illustrate the wutility of

logarithms in facilitating arithmetical caleulation; but for in-

formation as to the use df Logavithmic Tables the reader is
referred to works on Trigonometry,

®
B

Ezxample 1. Giveu log 3=-4771213, find log {{2-7)3 x (:81)7= 90}4}
. 27 4. 81 5
The required value =3 Iogm +z - log - 100 410‘, 90
.
=3 (log 3% - 1)+5 (log 34— 2)~ ; (log 97+ 1)

)
(Q+16 5)10[;3 (3+: 5)

= 16 log 3 -bif
= 46280766 — 585
=27780766.

The student should notice that the logarithm of 5 and its
powers can always he obtained from log 2; thus

log 5 ~log 1--- =log 10—log 2 =1~ log 2,

Ezemple 2. Find the number of digite in 87518, given
log 2 =-8010300, log 7 == -B450980.
log {R75%%) =16 log (7 x 125)

=10 (log 7 + 3 log 5}
=18 {log7+3-31og 2)
=16 x 2-9420080
=47-072128;

lience the number of digits is 48.  [Arvt. 210.]
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Example 3. Given log 2 and log 8, find to two plaues of decimals the
value of & frown the equation

3w, 4rtsag,
Taking logarithms of both sides, we have
(3~ 4z} log 6+ (z+ 5) log 4 =1log 8
. (3 —4z) (log 24+-log ) + (z+5) Zlog 2 =8 log 2; )
g{~4log2-4log3+2log)=8log2-3log2-Slogs—10log2;

_l0log2+3iog 8
T 21og3+4logs
_ 4416689
T2-510546%
=177...

EXAMPLES. XVL b,

1. Find, by inspection, the characteristics of the logarithms of
21733, 23'8, 350, 035, ‘2, 87, 875,

2. The mantissa of log 7623 is -8821259 ; write down the logmthms
of 7623, 742-3, 007623, 762300, 00000762.3

3. How many digits are there in the integral part of the numbers
whose logarithms are respectively
430103, 14771213, 369897, 5651517
4, {(3ive the position of the firat significant figure in the numbers
whose logarithing are
S7THIOLS, 6910815, 5-4871384.

Given log 2="3010300, log3=-4771213, log7==-8450980, find the
value of

5. logG4. 6. log8d. © 7. logrlzs

8. log-0125. 9. logld4 10. log43.
- 35 R

11, lega/12. 12. log \/; 13, logv/-0105.

14, Tind the seventh raot of ‘00324, having given that
logr 44093388 =7-044:3636.
15, Given log 194-8445 = 22886883, find the eleventh rovt of (3922
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16. Find the product of 37-203, 3-7203, 0037203, 372030, having
given that
log 37-203==1"5700780, and logl915631 == 6-2823120,

5 3254
17. Givenlog 2 and log 3, findl log \/ (:,-2) .

18, Given log 2 and log 3, find log(a/48 x 108‘;+ e
19. Calculate to six decimal places the value of
42x32 /°
given log 2, log 3, log7; also log 9076:226=395T0053.
20, Caleulate to six places of decimals the value of
(33049 =22 % 703
given log 2, log3, log7; also
log11=10413927, and log17814-1516= 42507651,
21, Find the number of digits in 3123 2%,

214180
22. Shew that <2—0-) is greater than 100.

23. Determine how many ciphers thero ars hetween the decimal

1000
point and the first significant digit in (%) .

Solva the following equations, having given log 2, log 3, and log 7.

24 3-2=5, 25, Ge=10°% 26 Hb-dmguet
2. 915=9m1 g, 28, 97,65 ~t=b To%,
29, artv=gv 30, 3l-=wv=4g-v

¥ =3.2v+1}' g2e-1 =33v-=}'

31, Given log,2="30103, find log.; 200.
32, Given log,,2="30108, log,) 7="84509, find log,./2 and log 7.



CHAPTER XVIL

EXPONENTIAT, AXD TOGARITHMIC SERIFS.

219. Is Chap. xve. it was stated that the logarithms in
common use were not found directly, but that logarithms are
first found to another Lase, and then transformed to base 10.

In the present chapter we shall prove certain formule known
as the Exponential and Logarithmic Series, and give a brief ex-
planation of the way in which they are used in constructing s
table of logarithms.

220, To expand a° in ascending powers of x.

By the Binominl Theoreny, ¢ n is greater than 1,

(1 . :i%)“

1 . :&J_ "‘.‘:’.’.’_.('fj’:ij_:.‘) . ;:3 L (".*-'*-”_T_];).(mf 2) =T1,“ ______
® (a: - }1) a ( wi (a’:—?—t)
=1+m B +- B F o (1)
By putting zx=:1, we obtain
1y -2 (1) (-3)
(1+;;) =1+1+ B + I3 o (2

But (1 + LAY {(1 + 1)"r;
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hence the series (1) is the =™ power of the serics (2); that is,

R [

] 4 @t —— e ————

‘ J 1—;}1 (1_?};)(1_%) .

l1+1+ — 3 + .0

and this is true however great = may be, 1f therefore 2 be
indefinitely increased we have

1 -a-m' 2L ={]1+1- 1+~—1—+—1-+ )
+5L.r‘T-)} i3 |4+ ....... —( -+ +’!§ I3 ]4 ...... .
The series 1+1+.—12+-%+|%+ ......
2 |3 4

is nsually denoted by e; hence
2 o

= — e .
1+m+_')‘_+|;3 T
Write ex for a, then
c'e c:c
e-1+cx+| |,5

Now let ¢=a, so that e=loga; by substituting for ¢ we
obtain

@ (100‘ a Iog‘a)"

]E + [3 + .

This is the Exponential Theorem.

& =1 +eloga +

Jor., When » is infinite, the fmif of (1 + -1-),‘.-: ¢,
H
[Seo Art. 266.]

Also ag in the preceding investigation, it may be slhewn that
when n is indefinitely incrensed,

1 2) =1 as A :
(1+5)=1+s SRt
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n

that is, when « is infinite, the limit of (1 + E) =
%

By putting T_:,z- %-a » we have

N

Now a Is infinite when = is infinite;
thus the limit of (1 - E) =g 7,
.. 1 " -t
Hence the limit of 1 ~—)=et
221, In the preceding article no restriction is placed upon
the value of #; also since ;a is less than unity, the expansions we
have used give results arithmetically intelligible. [Art. 183.]

But there is another point in the foregoing proof which
deserves notice. We have assumed that when =» is infinite

oo DY

the limit of 18 ==

[ I

Sor all values of 1.

Let us denoto the valus of

DD 15

Then 1%-- =.1. (xw.'r'" 1) L1 + _l

n

Bince » is infinite, we have

woox ; @
— = -0 that s, u =—wu,
% T r

=1

Tt is clear that the Yanit of wu, is |3‘)_ hence the Ymit of w4 is

i Il

73 that of %, Is é— ; and generally that of 7 is [+

ol B

(
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222. The series

1 1 1
1+1+|E- 3'\"[4‘......,
which we have denoted by e, is very important as it is the base
to which logarithms are first caleulated. Logarithms to this
base are known as the Napierian system, so named after Napier
their inventor., They are also called natural logarithins from the
fact that they are the first logarithms which naturally come into
consideration in algebraical investigations.

When logarithms are used in theoretical work it is to be
remembered that the base ¢ is always understood, just as in
arithmetical work the base 10 is invariably employed.

From the series the approximate value of ¢ can be determined
to any required degree of accuracy ; to 10 places of decimals it is
found to be 2:7182818284,

Ezample 1. Yind the sum of the infinite series

FENEREN
+,2+E+E

We have =141 5+ g e ;

and by puiting = - 1 in the saries for ¢,

1 1 1

; +E—.......

AT

el=1-14

I 1. 1
. =-1= Py = — a
Y —Z(1+ 2+ 4-5" f6+”””),

hency the sumn of the series is ; (e+e-Y.

Zaample 2. Find the coefficiont of z* in the expansion of 1- a'i— o8
&
1-qr-z?
Ay s RPN S—
s l-ex-z*e

LA

=(1~ar— % {I—z-f-f z +(_.1)?‘_;"+””"Jl‘
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- - 71 — —2
The coefficient raquired =ﬂ - (_._.1.) @ _(-1y

T T S

('1) L ar—r (r=1))

223.  To expand log, (1 + x) in ascending powers of x.
From Art. 220,

y* (Jog, @) 93 (log. @ )
I_-_"] AR

a¥=1+ylog, e+

In this series write 1+ for 4 ; thus
{1 +x¥
'l
=1l+ylog,(1+2)+ ‘—2 flog, (1 + 2)}* + |3 {log,(l +aP+ (L)

Also by the Binemial Theorem, when = < 1 we have
yo-0 . vy-Ny -2

E x4t E 24 (D).
Now in (2) the coefficient of y is

(—1) - 1)(—?) sy D23 . :
o+ i 878 4 a2 ;

(ltaf=1+yz+

that is, ==+ 5~ +.a,

Equaboe this to the coeflicient of  in (1) ; thus we have
o
]og,(l +m)=x—~§ - 3‘*—- Z——['- PPN
This is known as the Logarithneic Series.
Erzampls, If <1, oxpand {log, (1+2)}? in ascending powers of =.

By equatiug the coefficients of % in the sarlea (1) and {2), we see that the
required axpansion is double the coefficient of ¥® in

y-1) o y-Dm-2) v E-NE-2E-3)

1.E T ATy 19804
that is, double the coefficient of ¥ in

y-l . w-Uw-2) , -Ly-2H-3
R T T S I B Y S

. 1 1 1 1
Thus {log, (1+=)}*=2 «{zm-—g(1+ )1*‘ 4(1+—-+_;) 1“—} .
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224, Except when x is very small the series for log,(l + )
is of little use for numerical calculations, We can, however,
deduce from it other series by the aid of which Tables of Logar.
ithms may be constructed.

.1 . e+ 1
By writing oy for & we pbtain log, T hence
log {n + 1} —log,sn=

=1

s 1 - .
By writing — — for & we obtain log, ; hence, by changing
n

signs on both sides of the equation,

1 1 1
]ngn—]ogs(’?b“ l):;g, + 2—;;? + 3’7‘2”31- ............ (2).
From (1) and {2} Ly addition,
. 1 1 1 ;
log,(n+1y~log,(n-1}=2 (71, taat gt ) ...... {3).

From this formnla by putting #»=3 we obtain log, 4 — log,2,
that ig Jog, 2; and by effecting the calculation we find that the
value of log, 2= -60314718...; whence log,8 is known.

Again by putbing n=9 we obtain log,10—log,8; whenee we
find log, 10 =2-30258509....

To convert Napierian logarithms into logarithms to base 10

. i

we multiply by o8, 10

common system, and its value is

y which is the modulus [Art. 216] of the

1 2 A90LAR
SHGURERGY or 43420448
we shall denote this modulne by u.

In the Proceedings of the oyl Society of Lowdon, Val. xxvir
page 88, Professor J. C. Adams hag given the values of e, p,
log, 2, log, 3, log, 5 to more than 260 places of deciinals,

225, 1f we multiply the above series throughout Iy p, we
obtain formmule adapted to the caleulation of comamon lugarithms,

Thus from (1), plog,(e + 1) = p logm - gk

o 2nt o 3a
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that is,
log{n+1)-log,, =E - 2—‘:?+ ;%a— (1.
Similarly from (2),
BB, H
log,n=log,(n=1)=">4 o= + g5+ oo (2).

From either of the above results we see that if the logarithm
of one of two consecutive numbers be known, the logarithm of
the other may be found, and thus a table of logarithms can be
constructed.

It should be remarked that the above formule are only needed
to caleulate the logarithms of prime numbers, for the logarithm
of a composgite number may be obtained by adding together the
logarithms of its component factors.

In order to calculate the logarithm of any one of the smaller
prime numbers, we do not usually substitute the number in either
of the formule (1) or (2), but we endeavour to find some value
of m by which division may be easily performed, and such that
gither # + 1 or n— 1 contains the given number as a factor. We
then find log {n+1} or log(n— 1} and deduce the logarithm of
the given number,

Example. Caleulate log 2 and log 3, given u=-43420448.

By puiting n=10 in (2), we have the valus of log 10 —log 9; thus
1 -2 log 3="045420448 + 002171472 + 000144765 + -000010857
+-000000868 + -000000072 + 000000006 ;

1--2 log 8 ="045757488,
log 3="477121256.

Putting n=80 in (1}, we obtain log 81 —log 80; thus
4log 3 - 3log 2 - 1="00542B681 - 000033929 +-000000283 ~ 000000003 ;
4 log 2 = -908485024 - -005395032,
log 2 =-301029997.

In the next article we shall give ancther series for
log, (n+1) - log, 2 which is often useful in the construction of
Logarithmic Tables. For further information on the subject the
reader is referred to Mr Glaisher’s article on Logaersthms in the
Erncyclopaedia Britannics.

H. H. A, 13
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226, In Art. 223 we have proved that
o 2
log, (1 +x}=x -7+ g

changing & into — &, we have
x& o‘::!
]ogc(l—m)z-—x—g -

By subtraction,

log _-=2( @ )

x_
'~x\35

1+:c w41 1 .
Put 2 e that == G0 e tlius obtain

b 1)1 ! Y o )LuNy }
og, {1+ 1) - log, “““{9‘11 EYE Py T U i

Nore. This series converges very rapidly, but in practice is not always
80 convenlent gs the series in Art, 224

327. The following examples illustrate the subject of the
chapter.
Example 1. If a, # are the roots of the aguation az®<+ bz +c=0, shew
0.2_'_‘89 a:ﬁ +ﬁ3
that log {a- bz +ca¥)=loga+(a +ﬁ)x~-—-2—- 4+ —5 -,

Sinee a+pg= -%, a,S:.-Z, we have
a-bzdcit=a {1+ {a+8) x+ afr?}
=a (1 +ax} {1+ 8s).
. log {e = b + 2% = log atlog (1 + ax) +log {1+ )
a?xd Bt pat

=luga.+a:—m-;—-+ 3 " 'rlﬂ.'I.'—-" +- -

=logea+ a8~ -I-—’S-" a-;-ma:"-—

Hzample 2. Irove that the coefficient of 2" in the expansion of

log{l+z+a%is - g ori according as n s or ia not a muliiple of 3.
1-23 ,
log (1 +:c+:r:”}=log — :log{l - 2% -log{l-z)

megt-g s - - ——- ..+ |ax+ "+xl+ +- +
2 3 2 3
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If w is & multipls of 3, denote it by 8r; then the coefficient of z» is—}
7
. - : 1

from the first series, together with % from the second geries; that is, the
. . 3.1 2
coefficient 18 - — 4 =, or —~,
%R 1

If n is not a multiple of 3, z* does not occur in the first series, therefore

. .\ 1
the required coefficient ig e
228. To prove that e is incommensurable.
. m
For if not, let e~ pou where m and » are positive integers;

then 9_:’:1+1+_1.+}_+___+

1
23 [t

|7+ 1

+ + ..

(&t

multiply both sides Ly |n;
! 1

1
- — 1 = integer + —m. + mmr gt
“omlnzLeinteger 4 oo & Yy (st 3y (medy T

1 1 1

Ry (h cwr Y ey Sl ooy e ) e

is a proper fraction, for it is greater than n—l-— and less than the

+1

gecmetrical progression
S . ;
Atl ey ey

. 1 . . :
that i, less than o hience an integer is equal to an integer pius

a fraction, which is absurd ; therefore ¢ is incommensurakle.

EXAMPLES, XVIL

1. Fiud the value of

D A A A |
l—§+'3-‘-"i+5—é+....
2, TFind the vualue of
1 1 1 1 1
s gt r e Lty e

132
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3. Shew that 5
log,(n+a)—log.(n — o) = 2( +3n3+5715 )

zF ot
4 If y=x 2+3 —
shew that = y+J +"f‘!3+
5. Shewth&t
a0 b (a 6) +,..=log,a - log,b,

6. Tind the Napierian logarithm of -9—9—9- correct to sixteen places

of decimals.

. 1 2 3 -
—1 = —_ o .
7. Provethat e *2(3+ 5+i7+....).

8. Prove that
: 2
14T o gl ol
log,(1+20*=(1 — &) %= (I 2 3 s 5 6 )
9, Find the valus of
1
gt <~t4 3/‘)+|§(m“—y“}+----

10. Find the numerical values of the common logarithms of 7, 11
and 13; given u="43420448, log 2="30103000.

11. Shew that if @22 and E?

1 at 1 a3 1
o <a3+m—3) -3 <x4+‘;) + 3 (.2:“+;)— ...== log, (1 +cm:3+a3+gi) .

12, Prove that

are eech less than unity

L .3 -
log (14 8%+ 22%) =3z - 5t + Ba? 17 +.
273 4
and find the general term of the series.
13. Prove that
143z . ba®  35z% 65zt
08 T =3 gty s

and find the general term of the series,

&, . .
in a series of aacending powers of 2.

&
14, Expand =
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15. Express ;-)(e‘“+e—"”) in ascending powers of &, where ¢=+/ 1.

16. Shew that

log(x+2h)=21og. (v +A) - log,a~ # + A + L +
o ' A T [ e A
17. Tfaand 8 be the roots of £?— px 3¢ =0, shew that
24 47 1,838
log.(1+po+gat)=(a+ g)a - EE a2 TEE 50
18, If #<1, find the sum of the series
1 2 3

4
- ol - - b
2.1': +3.7:3+ x4+5.1,+

19. Shew that

1" 1 1 1
103'(1+a> = ST TS 3m IR Bdfrir

i . . .
20, If IOg‘m-S ba expanded in & series of ascending
powers of x, shew that the coefficient of 2~ is —;-11 if » be odd, or of

the form 4m+2, and ;:': if n be of the form dm.

21. Shew that

3
1+2 + % +4 A =5e

1=
22. Prove that

1 1 1
2 Yog, n—log, (n+1) —log, (n - 1)=-F+LW+ Gt

1 1
P i T 3wy
1 01,1

n_ 9nt ' 3nd

23. Shew that +...

24, 1If log, 1_902 -a, log, ~b, log, = _c, shew that

log,2="7e—-2b + 3¢, log, 3=11a— 3b+ b¢, log, 5=16a—4&+7¢;
and caleulate log, 2, log. 3, log, 5 to 8 places of decimals.



CHAPTER XVIIY,

INTERERT AND ANNUITIES.

229, In this chapter we shall explain how the solution of
questions connected with Interest and Discount may be simplified
by the use of algebraical formulze.

We shall use the terms Jaterest, Discount, Present Value in
their ordinary arithmetical sense; but instead of taking as the
rate of interest the interest on £100 for one year, we shall find it
more convenient to take the interest on £1 for one year.

230. o jfind the interest and amount of a glven sum in o
given time af simple interest,

Let P be the principal in pounds, » the interest of £1 for one
year, n the number of years, 7 the interect, and M the amount.

The interest of P for one year is Pr, and therefors for n years
is Pnr; that is,

I =Pur . (1).
Also M=P+1;
that is, M=Pl+mr) . oo, {2).

From (1} and (2) we see that if of the quantities P, n, r, 1,
or P, m, , M, any three be given the fourth may be found,

231, T find the pressnt value and discount of o given sum
due in & given time, allowing simple irderest.

Let P be the given sum, V the present value, I} the discount,
r the interest of £1 for one year, n the number of years,
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Since V is the sum which put out to interest at the present
time will in # years amount to P, we have

P=V(l+mr);

Y 4
Tl +nr’
. P
149w
_ Par
I

Nore. The value of I given by this equetion is calied the true discount.
But in practice when a sum of money is paid before it is due, it is customary
to deduct the imterest on the debt instesd of the true dissount, snd the
wmoney so deducted is callad the banker’s diseount; so that

Banker's Discount = Par.
Pur

Trune Digeount = .
149

Erample. The difference betwean the true discount and the banker's
discount on £1900 paid 4 mowrths before it is due is Bs. 8d.; find the rate
per cent., simple interest being allowed.

Lst r denote the interest on £1 for one year; then the banker’s discount

1900
ia 1920"' , and the true discount is —r
3
1900r
1800 8 1
S8 Ligr ©
whence 190002 =38 +r;

. o bn/TTEI00 _ 12151
T 3800 " TBEGO
sz _ L.
3800~ 3»°
.. rate per cent. =100r=4,

Rejecting the negative valus, we have r=

232. To find the interest and amount of ¢ given sum wm &
given time af compound inlerest,

Let P denote the principal, R the amount of £1 in one year,
7 the number of years, I the interest, and M the amount.
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The amount of P at the end of the first year is P& ; and, since
this is the principal for the second year, the amount at the end of
the second year is PR x R or PR'. Similarly the amount at the
end of the third year is PA? and so on; hence the amount in
n years is PR"; that is,

M= PR
I=P( -1}
Nore. If r denote the interest on £1 for one year, we have
R=1+m

233. In business transactions when the time contains a
fraction of & year it is usual to allow stmple interest for the
fraction of the year. Thus the amount of £1 in } year is

reckoned 1 +%; and the amount of P in 4% years at compound

2 . .
interest is PR* (1 +§r) . Similarly the amount of 2P in

n+1~years is.PR"(l +f-).
e b1

If the interest is payable more than once a year there is a
distinction between the nominal arnnual rate of interest and that
actually received, which may be called the true annual rate; thus
if the interest is payable twice a year, and if r i3 the nomingl
v

2
]
and therefore in the whole year the amount of £1 is (I +§),

2
or 1+fr+?—'—' so that the frue annual rate of interest is

4 H

annual rate of interest, the amount of £1 in lalf & yearis 1 +

ri
¥+

4

234, If the interest ig payable ¢ times a vear, and if r is
the nominal annual rate, the interest on £1 for each interval is

g, and therefore the amount of P in n years, or gn intervals, is
| id
b2 (1 N 1’) :
4
In this cage the interest is said to be “converted into prineipal”
¢ times a vear.
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If the interest is convertible into principal every moment,
then ¢ beecomes infinitely great. To find the value of the amount,

putg-i, go that g =z ; thus

the amount = £ (1 + 1”)<’r =P (1 + l m: F {(1 + -]-l)g}w
g 2 x

' = Pe", [Art. 220, Cor.,]
since % is infinite when ¢ is infinite.
235. To find the present value and discount of @ given sum
due in @ given time, allowing compound interest.

Let F be the given sum, V the present value, D the discount,
R the amount of £1 for one year, » the number of years.

Since ¥ is the sum which, put out to interest at the present
time, will in = years amount to P, we have

P=VR";
P =n
V=§= .R 3
and D=P(l-E™).

Egample. The present value of £672 due in 2 certain time is £126; if
compound interest at 43 per cent. be allowed, find the ime; having given

log 2=="30103, log 3="47T12.

=4 _1 _*
Hare r-m_ﬁ,andR_M.

Let n be the number of years; then
e72=126 (20 )';
= 1)
.ml 25—10 672
- M08 3 =08 35
lo ];09,_10 16,
or nlog 5 =l0€g s

. 7 (log 100 - log 96) =leg 16-1log 3,
_ 4log2-log3
"y Blog2-logs

72700
= = 1y
"= iTTa 41, very nearly;

thus the time is very nearly 41 years.
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EXAMPLES. ZXVIIL a.

‘When required the following logarithms may be used.
log2="3010300, Jog 3=-4771212,
log 7=-8450980, logll=1-0413927.

1. Find the amount of £100 in 50 years, at 5 per cent. compound
interest ; given log114-674=2-0594650.

2. At simple interest the interest on a certain sum of money is
£90, and the discount on the same sum for the same time aud at the
samoe rate is £80; find the sum. _

3. In how mapy years will a sum of money double itself at 5 per
cent, compound interest?

4. Find, correct to a farthing, the present value of £10000 due
8 years hence at 5 per cent. compound interest; given

log 6768394 = £-83048586.

5. In how many years will £1000 become £2500 at 10 per cent.
compourd interest?

6. Shew that at simple interest the discount is half the harmonie
mean between the sum due and the interest on it.

7. Shew that money will increase more than a hundredfold in
a century at 5 per cent. compound interest.

8 What sum of money ab 6 per cent. compound intersst will
amount to L1000 in 12 years? Given

logl06=20263059, log 49697 —=4-6963292.

8. A man borrows £800 from 2 money-lender, and the bill iy
renewed every half-year at an increage of 18 per cent.: what time will
elapse before it reaches £6000% Given log118=2-071882.

10. What is the emount of a farthing in 200 ysars at § per cent.
compound interest? Given logl06=202563059, log115-1270=20611800.

ANNUITIES.

236. An annuity is s fixed sum paid periodically under
certain stated conditions; the payment may be made sither once
a year or at more frequent intervals. TUnless it is otherwise
stated we shall suppose the payments annual.

An annuity certain is an annuity payable for a fixed term of
years independent of any contingency; a life annuity is an
annuity which is payable during the lifetime of a person, or of
the survivor of a number of persops.
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A deferred annuity, or reversion, is an annuity which does
not begin until after the lapse of a certain number of years; and
when the annuity is deferred for » years, it is said to commence
after » years, and the first payment is made at the end of n+1
years.

If the annuity is to continue for ever it is called a perpetuity;
if it does not commence at once it is called a deferred perpetuity.

An anmuity left unpaid for a certain numnber of years is said
to be forborne for that number of years.

237, 1o find the amount of an anmuity left unpaid for o given
number of yeurs, allowing simple interest,

Let 4 be the annuity, » the interest of £1 for one year, » the
number of years, M the amount.

At the end of the first year 4 is due, and the amount of this
sum in the remaining n -1 years is 4 + {(n — 1) 74 ; at the end of
the second year another 4 is due, and the amount of this sum in
the remaining {n—2} years 1s 4 +{n—2)74; and so on. Now
M is the sum of all these amounts;

S M={dr =1 rA) (A + (e =2 rd) +
the series consisting of « terms;

...... +(d+rd}+ 4,

238, To find the amount of an annuily lfi unpeid for a
giuen nuwmber of yeawrs, allowing compound interest.

Tet A be the annuity, 2 the amount of £1 for one year, »
the number of years, M the amount,

At the end of the first year 4 is due, and the amount of this
sum in the remaining m—1 yesrs is AR, at the end of the
second year snother 4 is due, and the amount of this swin in the
remaining » — 2 years is AR, and sc on,

o Mo AR AR L + AR+ AR+ 4
=A{l +B+R"+...... to = terms)
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239. Tn finding the present value of annuitics it is always
customary to reckon compound interest; the results obtained
when simple interest is reckoned being contradictory and un-
trustworthy. On this point and for further information on the
subject of annuities the reader may consult the Text-books of the
Institute of Actuaries, Parts 1. and I, and the article Anrnwuities
in the Encyclopedia Brifannica,

240, To find the present value of an annuity fo continue for
a given number of years, allowing compound interest,

Let A be the annuity, E the amount of £1 in one year, n
the number of years, ¥ the required present value,

The present value of 4 due in 1 yearis 4 87"
the present value of 4 due in 2 years is 4R™%;
the present value of 4 due in 3 years is AR™;

and so on. [Art. 235.]
Now V is the sum of the present values of the different
payments ;
Ve AR + AR + AR+ ... to n terms
1-R™
1-R"
L~ R™
=4 o1

¥ore. This result mey aiso be obtained by dividing the value of A,
given in Axt. 238, by Rn. [Ar. 282.]

=4R™

Cor, If we make n infinite we obtain for the present value

of a perpetuity
4 4

TE-1T e

v
241, 1f md is the present value of an annuity 4, the annuity
is said to be worth m years’ purchase.
In the case of a perpetual annuity md = g ; hence

100

1
e as — = —_—
r rate per cent.
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that is, the number of years’ purchase of a perpetual annuity is
obtained by dividing 100 by the rate per cent.

As instances of perpetual annuities we may mention the
income arising from investments in irredeemable Stocks such as
many Government Securities, Corporation Stocks, and Railway
Debentures. A good test of the credit of a Government is fur-
nished by the number of years' purchase of its Stocks; thus the
2} p. ¢ Consols at 90 are worth 36 years’ purchase; Egyptian
4 p. c. Stock at 96 is worth 24 years’ purchase; while Austrian
5 p. ¢. Stock at 80 is only worth 16 years’ purchase.

242, To find the present value of a deferred ammuity to
commence at the end of p years and 1o continue for n years, allow-
ing compound inierest.

Let 4 be the annuity, B the amount of £1 in one year, V the
present value. '

The first payment is made at the end of (p-1} years.
[Art. 236.]
Hence the present values of the first, second, third ... pay-
ments are respectively
AR—fp-i-J), AR—(p+s}’ AR-(;M)}
oo Vo AR JR-n, R0,

1-R™
— = (p+1} v
= 4R e
_4ART AR7™
“E-1 E-1°
Cor. The present value of a deferred perpetuity to commenee
after p years is given by the formula
i
TER-1°
243, A freehold estate is an estate which yields a perpetual
annuity called the rent; and thus the value of the estate is equal
to the present value of a perpetuity equal to the rent.

...... 1o »n terms

Tt follows from Art. 241 that if we know the number of years’
purchase that a tenant pays in order to buy his farm, we obtain
the rate per cent. at which interest is reckoned by dividing 100
by the number of years’ purchase.
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Ezample. The reversion after 6 yesrs of a freehold estate is hought for
£30000; what rent ought the purchaser to receive, reckoning compound
interest at 5 per cent.? Given log 1-05="0211893, log 1-340000 = 1271358,

The rent is eqnal to the annusl value of the perpetuity, deferred for §
years, which may be purchased for £20000.

Let £4 be the value of the annnity ; then sinee R=1-05, we Liave
4% (1:05)%
.05 L
o 4 x (105)=6=1000;
logd—6log 1'05 =38,
log 4 =3-1271358=1og 1340-045.
. A=1340-086, and the rent is £1340. 1s. 114,

20000 =

944, Suppose that a tenant by paying down a certain sum
has obtained a lease of an estate for p+ ¢ years, and that when
g years have elapsed he wishes to renew the lease for a term
p+n years; the sum that he must pay is called the fine for
renewing n years of the lease.

Let 4 be the annual value of the estate; then since the
tenant has paid for p of the p +n years, the fine must be equal
to the present value of a deferred annuity 4, to commence after
p years and to continus for # years ; that is,

AR ARTTTC

the fine = sy s

| Art. 242.]

EXAMPLES. XVIIL b

The interest is supposed compound unless the contrary is stated.

1. The amount of an annuity of £120 which is left unpaid for
5 years is £67%; find the rate per cent. allowing simple interest.

2. Find the amount of an annuity of £100 in 20 years, allowing
compound interest at 44 per cent. (iven
log 1045 = 0191163, log 24117 =1-3825260.

3. A freshold estate iz bought for £2750; at what ront should it
be let so that the owner may receive 4 per cent. on the purchase money?

4, 4 freehold emtate worth £120 & year is sold for £4000; find the
rate of interest.
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5. How many years’ purchase should be given for a freehold
estate, interest being calculated at 3} per cent.?

6. If a perpetual anuuity is worth 25 years’ purchase, find the
amount of an annuity of £625 to continue for 2 years.

7. 1f a perpetual annuity is worth 20 years’ purchase, find the
annuity to continue for 3 years which can be purchased for £2522.

8. When the rate of interest is 4 per cent., ind what sum must
he paid now to receive a frechold estate of £400 a year 10 years hence;
having given log 104=2-0170333, log 675565 = -B29EG70.

9. Find what sum will amount to £500 in 50 years at 2 per cent,,
interest Leing payable every moment; given ¢-1 ='3578.

10. If 25 years' purchase must be paid for an annuity to continue
. years, and 30 years’ purchase for an annuity to continue 2 years,
find the rate per cent.

11. A man borrows £5000 at 4 per cent. compound interest; if the
principel and interest are to be repaid by 10 equal annual instalments,
fird the amount of each instalment; having given

log 104= 0170333 and log 675565 =5-829667.

12. A man has a capital of £30000 for which he receives inferest
at 5 per cent.; if he s%)ends L1800 every year, shew that he will be
ruined before the end of the 17** year; having given

log 2="3010300, log 3=="4771213, log 7="8450980,

13. The annual rent of an estate is £500; if it is let on a lease
of 20 years, calculate the fine to be paid to renew the lense when 7 years
have elapsed allowing interest at § per cent.; having given

log 106220253059, log4-688385=-6710233, logd-118042="4038820.

14, 1If a, , ¢ years’ purchase must be paid for an annuity to con-
tinue n, 27, 3u years respectively; shew that

a? —ab+b=ac

16,  What is the present worth of a perpetual annuity of £10
payable at the end of the first year, £20 at the end of the second,
£30 at the end of the third, and so on, increasing £10 each year;
interest being taken at 5 per cent. per annuin ?



CHAPTER XIX.
INEQUALITIES.

945. ANy quantity g is said to be greater than ancother
quantity & when a—b is positive; thus 2 is greater than -3,
because 2— (- 3), or 5 is positive. Also & is said to be less
than @ when b— « is negative ; thus —5 is less than —2, because
~5—(=2), or - 3 is negative,

In accordance with this definition, vero must be regarded as
greater than any negative quantity.

In the present chapter we shall suppose (unless the contrary
is directly stated) that the letters always denote real and positive
quantities.

246. 1f @ > b, then it is evident that

' ate=b+e;

a—c>b—c;

ac > be;
a b
¢ ¢’

that is, an inequality will still hold after each side has been
increased, dimtnished, mullipled, or divided by the same positive
gieoniity,

24%, If @—c> b,
by adding ¢ to each side,

a=b+e¢;

which shews that in en inequality eny term may be transposed
Jrome one side to the other if its sign ba chunged.

If «>b then evidently & <a;
that is, ©f the sides of an ineguality be transposed, the sign of
tnequalily must be reversed,
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If @ > b, then a2 -5 is positive, and & —« is negative ; that
is, —a—{—b) is negative, and therefore
—a=<—h;
hence, of the signs of oll the terms of an inequality be changed,

the sign of inegualily must be reversed.

Again, if @ > b, then — 2 « — B, and therefore
—ac <—be;

that is, o the sides of am inequality be multiplied by the same
negative quantity, the sign of inequality must be reversed.

248, If @, >b, a,>d, @ >b, ..... @ >b , it is clear
that
Gt Fa,+ = b Fh b+ b

"

and eadm, ..o =bbb . b

24-9 If a=&, and if p, q are positive integers, then ja> Y8,

1
or a’ > bt ; and therefore a" > b‘i‘ that is, @’ > 8", where » is any
positive guantity.

1 1
Further, < that is ¢™” < 5™,

250. The square of every real quantity is positive, and
therefore greater than zero. Thus (a — ) is positive;
— 20+ b = Q;
a®+ 5 = 2ab.

Similarly z + L J..’c_; H

that is, the arithmetic mean qf' fwo positive quaniities s greater
than their geometric mean.

The inequality becomes an equality when the quantities are
equal.

251. The results of the preceding article will be found very
useful, especially in the case of inequalities in which the letters
are involved symmetrically.

H. H A, 14
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Ezampie 1. 1f a, b, ¢ denote positive quantities, prove that
a4 P+ 2> be+ca+ad;

and 23+ 18 +ef)=be (h+e)+ca{c+a)+ab{etb)
For VI8 e (1)
ok ats= 20a;
a4+ b= 2al;
whence by addition 204 eixbe s catal.

It may be noticed that this result is true for any resl values of z, &, ¢.

Again, from (1) P ebe o be e (8
BB be B e) i (B

By writing down the two similar inequalities and adding, we cbtain
2 (a3 + 1+ ¥ be (b4el+ca(e+a) +abla+b)

It should be observed that (3) is obtained from (2) by introducing the
factor b+¢, and that if this factor be megative the inequality (3} will no

longer hold.
Example 2. If z may have any real value find which is the greater,
B+l or 242
22+l - {z? )= -2 — (-1}
= 1) {z-1)
=(z 1% (& +1).
Now {x~1)? iz positive, hence
2741l > or w41
aceording as &+ 1 is positive or negative; that is, according as & = or < -1,
If = -1, the inequality becomes an equality.

262. Let @ and & be two positive quantltles, S tlwlr sum
and P their product; then from the identity

dub=(a+b) - (2 - &),
we have
AP =8 —(a-8)° and 8'=427 + {a-b)"

Hence, if § is given, P is greatest when a=b; and if 2 is
given, & is least when
a=b;

that is, 1f the sumn of two positive guantities is given, their product
28 greatest when they are equal ; and if the product of two positive
quantities is given, their sum is least when they are equol.
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253. To find the greatest value of a product the sum of whose
Sfactors is constant.

Let there be n factors @, &, ¢, ... &, and suppose that their
sum Is constant and equal to s.

Congsider the product abe ... k, and suppose that @ and b are
any two unequal factors. If we replace the two unequal factors
&+b a-+bd . .

5 5 the product is increased
while the sum remains uwnaltered ; hence so long as the product
conlains two unequal factors it can be increased without altering
the eum of the fuctors; therefore the product is greatest when all
the factors are egual. In this case the value of each of the n

a, b by the two equal factors

factors is % , and the greatest value of the product is (%) ; Or

(a+6+c+... +k)"

b2

Con. If a, b, ¢, ... k are unequal,
(a+b+c+...+k)" .

>abe ... k;
n

that is,

1
a+6+;+ '::--;E>(abc B

By an extension of the meaning of the terms arithmetic mean
and geometric mean this result iy usually quoted as follows:
the arithmetic mean of any number of positive quantities is greater

than the geametric mean.

Exzample. Shew that {(1*+27+87+ . 4+57)t > ot (Ea)“;
where v is any real quentity.

174 2T 374 . +ﬂ."}
n

Bince
(H_M)“> 1".2".3"...._.9’&", that iH, >(E)r;

whenos wa obtain the reeslt xequired,

14—2
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254,  To find the greatest value of a™b"c™.. . when a +bh+e+ .,
is eonstant; m, n, p,... being positive integers.

Since m, =, p,... are constants, the expression «”§"¢?,.. will

”m " F
be greatest when (E) (é) (E) ... ig greatest. But this last
. n/ \p

sxpression is the product of m+n +p+ ... factors whose sum ig

m(ﬂ) +ﬁ<é) +p<:—)) +..,0r g+b+e+ ..., and therefore con-
.

7
stant. Hence a™%*... will be greatest when the factors
a b ¢
m’ w’ p'’
are ail equal, that is, when
a b ¢ at+bte+..
moom P Mt P

Thus the greatest value is

. (I+E)+C+ -l mtnteb..
mre"pt. | —————
mtntpt..

. Example. Find the greatest value of (a+ )% (¢ —z)* for any rea] value
of = numerically less than a. '

3 fo— N4
The giveu expression is greztest when (G-Ti-"-:f (a_ _._1-:) ia greatest; but

3 4
the aum of the factors of this expression iz 3 (‘l-;—x) +4 (a;z ) , or 2a;
hence (@ + ) (2 - 2)* is greatest when gi-:i-;fz E—}f ,0r g=~ :; .

78
7T

Thus the greatest valus is i

255. The determination of smaximuem and menimiem values
may often be more simply effected by the solution of a quad-
ratic equation than by the foregoing methods. Instances of
this have already occurred in Chap. 1x.; we add a further
illustration.

. Ezample. Divide an odd integer into two integral parts whowse product
18 & Maxirnom.
Denote the integer by 2n+1; the two parts by » and 2n+1-2; and
the product by y; then (2n+1}z-z%=y; whencs
91 = (2n-+ 1)k /(SR L~ 4y
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but the quanbity under the radical must be positive, and therefore y cannot
L
he greater than i {2n+1}% or n“+n+§; and sinee y is integral its greatest

value must be #°+n; in which cese z=n+1, or n; thus the two pavta are i
and -+ 1,

258, Sometimes we may use the following method.

Exemple. Find the minimum value of (fi*_zl(?-_}:x} .
e+

Patc+x=y; then

@ty (b-cty)

a ¥

G ]

Ty

(Jm ¢} y)ﬂ

the expression
+yta~ctb-¢
+a-ctb-ct+2 JE- & (E—0).

Hance the expresswn is & minimum when the square term is zero; that

Thus the minimum value is
a—c+b-ct+2 . fla= e b-ep

and the corresponding valus of z is Jf{a—¢) (b—¢) -

EXAMPLES., XIX a,

1. Drove that {ub+ay) {aw +by) = dabxy.
2, Prove that (b +c){c+a)(a+b)>Babe.

3. Shew that the sum of any real positive quantity and its
reciprocal is never less than 2.

4, I a*+ =1, und zi+y?=1, shew that ar+by<1l

5, If a?+134+i=1, and #*+39+#=1, shew that
ax +by+ez< 1.

1+
1+a
Shew that (22 +y% +2x) (2 + g+ 2%} > 9Pyt
Find which is the greater 3al? or o®-+28%.

Prove that o®b+ab® <a*+ b4

10, Prove that 6abe < be(b+c)+caic+a)+ab (e+b).
11. Shew that b2+ 2a? 4+ a?b? > abe (a+ b+ ¢).

If @= b, show that a®ht> abb?, and 10g b < log

©oN o

&
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12. 'Which is the greater 2* or 22+2+2 for positive values of z?
13, Shew that 2%+ 13a%r > 5aa®+90%, if x> a.

14, Find the greatest value of & in order that 72%+411 may be
greater than #2417z

15. Find the minimum value of 22—12x+40, and the maximur
value of Z4r—8-922%

16. Shew that (EL 2>an and 2.4.6...2% <(n+ 1~

17. Shew that (x+4y+2)° > 27xyz.

18. Shew that »*>1.3.5...(8a - 1)

19, If n be a positive integer greater than 2, shew that
> ] Loy 4fEn-L

tn
20. Shew that (|n}3<nn (ﬂ; 1) -

21. Shew that
1) wty+ef=27{y+z—-2)(zt2~y) (z+y -3}
(2) ayz>(y+te-z) etz -y)(z+y -2
28. Find the maximum value of (7 —£)* (2+#)° when x lies batween
¥apd -2,

G+a)(@+a)

23. Find the minimum value of
L4z

*257. To prove that if a and b are positive and unequal,
a®L b™  sa+b\® . L .
—5 > (T) , except when WL 18 & positive proper fraction.

We have a"‘+b“:(a+b @— 5" (‘i%?_%__{’ "’. and

-3
. a+d
is less than —3~» We may expand each of these

ST

)

1

. [+
81NCE

a-—&
2

et b _(a;b)”‘ +m(1m; 1)(@_;_6)*4 a___{:)s

L 2 - 2
L m(m=1)(m—2)(m-3) (ﬁ_é)““(“_**")‘+ .

expressions in ascending powers of

[Are. 184.]

1.2.3.4 2 2
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(1) If m is a positive integer, or any negative quantity,
all the terms on the right are positive, and therefore
a” + 5" (a, + b)m
=] .

a9 9

.-d =

(2} If s is positive and less than 1, all the terms on
the right after the first are negative, and therefore

e+ fu+ T
()

(3) If m>1 and positive, put m:%‘ where n < 1; then
1 o1
M+ BN sat+ BN\
=) -5
1

‘ (a’"+6”') ?(a"')";(b;“

2

1
/a4 ENT a+b
o (_'i_ g

L dn w+b)"“

» by (2);

—rr— e |

2 2

Hence the proposition is established. If m =0, or 1, the
inequality becomes an equality.

*¥258.  If there are n positive guantifies a, b, ¢,.. .k, then

at+b® e +k® At b+ +K\®
-
I n

watless I 28 & pogitive proper fraction.
Suppoese m to have any value not lying between 0 and 1.

Consider the expression «™+8™+¢™+ ... +k&" and suppose
that @ and & are unequal ; if we replace o and b by the two equal

.. a+b a+b .
quantities ——, ——, the value of ¢+ 23+ ¢+ ... +% remains un-

2 ' 2
altered, but the value of &™ -+ 8™ + 6" + ... + &A™ is diminished, since

a*+bh">2 a_,:‘t;_b) .

F
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Hence so long as any two of the quantities g, b, ¢,... % are unequal

the expression a”+ & +¢"+ ...+ 4™ can be diminished without

altering the value of e +b+¢+...+%; and therefore the value

of & +8"+¢™+ ...+ %" will be least when all the quantities

a, &, ¢,...k are equal. In this case each of the quantities is equal
a+b+et. 4+

bo I

and the value of ™+ 8" +¢™+ ... + &™ then becomes

<a+b+c+ +}'c>’“
o ——

7

Hence when g, b, ¢,...k are unequal,

" R AT (a+b+c+ ‘..+/c)"‘
e .

n o

If m lies between 0 and 1 we may in a similar manner prove
that the sign of inequality in the above result must be reversed.

The proposition may be stated verbally as follows

The arithmetic mean of the m™ powers of 1 positive guantities
i greater than the m™ power of thewr arithmetic mean in all cases
exeept when m lies between O and 1.

*289.  If a and b are positive integers, and a>b, and i x be a

oo . X\ x\"
positive quantity, (1 + ;) > (1 + E) .

For
(1 +£)a=l+w+(1 #i)g: + (1 —%)(1 —-2)%+---(1),

‘the series consisting of & + 1 terms; and

Y 1N\ & 1 AN
(5 1eme (D5 6-H - P
the series consisting of 5 + 1 terms. )

After the second term, each term of (1) is greater than the
corresponding term of (2) ; moreover the number of terms in (1)
1s greater than the number of terms in (2) ; hence the proposition
is established.
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*260. Tb prove that \/; +z \/1 *y,

if x and ¥ are proper fractions and positive, and x > y.

For «/__:_m_{ Ty
l-y

aceording as llog iﬂ> or <—10g1'ry.
- ¥
1 1+ o =z
But 510g11x=2(l + +—5——+...>, [Art. 226);
1 1+y ¥
and ylogi_y-—2(l+§+g+...).
1, l4a 1, l+y
51 T:—o—;:-—log—ug,,

and thus the proposition is proved.

%961, To prove that (L+x)™"*(1—x)"=1, if x<1, and %o

a+h
deduce that a*bt = (a. -; b) .

Denote {1 +a)'** (1 —=)'™ by I’; then

log P = (1 +&)log (1 +) +(1 —) log (1 — )
= {log (1 + )~ log (1 —x)} + log (1 +m)+log(1 - 1)

=2m(w A % ) (2 +--+ )

=o(""+i+f_+)
“\T.278.475.8 )

Hence log P is positive, and therefore P>1;

that is, (1 +2y*(1-a)"">1
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, where u>z; then

2R

In this result put x=

f -5
(o972
k4 it

(zé_tz) (1_:2)>1 or 1;
U i
- (15 + z)u-i, (u__‘ )u“s}uﬁu.

a+h
Now put u+z=a, ©—z=0b, 50 that u= -

=+
a“ht > (&—;—b) .

*EXAMPLES. XIX. b

1. Shew that 27 (a*+ b+t = (a+-b+)h

2. Shew that n(n-1¥<8(1°+23+3%+ ... ).

3. Shew that the sum of the m™ powers of the first # even num-
bers iy greater than = (n+ 1), if m>1.

4 If a and B are positive quantities, and a = 8, shew that

1\e PAY:
(43)= (+p)
Hence shew that if n>1 the value of (1+:I)“ lies between 2 and

2:718,..
If @, b, ¢ are in descending order of magnitude, shew that

5,
(‘Eﬂ) < (’Ltﬁ)",
& — b—e
: AN RS EFE Y
6. Shew that (ﬂ*i“.‘—ﬂ’) < atbhe. B

7. Prove that Ellog(l +am) < i log (1 +a™), if m>n.

8 If nis a positive integer and x < 1, shew that
13"+l 1—pn

741 n
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9. Ife b carein H.P, and = > 1, shew that ar+em = 20m

10. Find the maziroum value of 22 (4a— x)8 if 2 is positive and less
1 1
than 4¢; and the maximum value of #2(1 —x¥® when «x is a proper
fraction.
11. If z is positive, shew that log (L4 =) <z and }1‘-‘% .

12, If wty+e=1, shew that the least value of _%-4';'}'; is 9;

and that (1 —a) (1 —)(1 - z)> By
13, Shew that (u+b+c+4){(a+ B+ A +d% > (a®+b¥+3E4 )%
14, Shew that the expressions
af@-b)(a—c}+b (b—c) (b—a)te (c—a)(e—F)
and atla—bia—c)+b—c){b-altcte—a) (e~ D)
are both positive.
15, Shew that (o™ +y™* < (x*+ 4™ if m=mn,

16. Shew that a?b% < (a—;;-b-)“b.

17, If a, b, ¢ denote the sides of a triangle, shew that
(1) a*p-9p-n+¥g-ng-n+Eir-pir-9
cannot be negative; p, g, r being auy real quantities;
(9} ayz+ bz +clzy cannot be positive, if w4y +2=0.
18. Shew that |1 |3 [8 coeecnne an -1 > (1'1:)“
19. Ifa, be d ... are o Fositiva integers, whose sum s equal
to n, shew that the least value o

jebleld is {Jgr (jg £
where ¢ is the quotient and » the remainder when # is divided by p.



CHAPTER XX,

LIMITING VALUES AND VANISHING FRACTIONS.

262. Ir o be a constant finite quantity, the fraction ;—fc&n
be made as small as we please by sufficiently increasing z; that
is, we can make g approximate to zero as nearly as we please
by taking 2 large enough ; this is usually abbreviated by saying,

“when x ig infinite the limit of - is zero.”
. .la. )
Again, the fraction Qyicrenses ad » decreases, and by making
&
2 as swall as we please we can make s large as we please;
. a o e -
thus when « I8 zero s hag no finite limit; this is usually ex-
. . . G ...
pressed by saying, “when x is zero the limit of o infinite,”

2683, When we say that a quantity tmereusss withows Hmit
or 18 infinite, we mean that we can suppose the quantity to hecome
greater than any gquantity we can name.

Similarly when we say that a gquantity decremsss withowt
limit, we mean that we can suppose the quantity to become
smaller than any quantity we can name.

The symbol o« is used to denote the value of any quantity
which is indefinitely increased, and the symbol 0 is used to
denote the value of any quantity which is indefinitely dimi-
nished.
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264, The two statements of Art. 262 may now be written
sybalically as follows :

. . o .
if 2ise, then = is 0;
@

. . a .,
if 218 0, then = is oo,
@

But in making use of such concise modes of expression, it
must be remembered that they are only convenient abbreviations
of fuller verbal statemnents.

265. The student will have had no difficulty in understanding
the use of the word limit, wherever we have already employed it;
but as a clear conception of the ideas conveyed by the words
fmit and limiting value is necessary in the higher branches of
Mathematics we proceed to explain more precisely their use and
meaning,

266. Deroorion. If y=/(x), and if when w approaches &
value ¢, the function f{(2) can be made to differ by as little as
we please from a fixed quantity b, then b s called the limit of
y when o= a.

For instance, if 5 denote the sum of » terms of the series

1. 1 1 1 .
1 g gt gt then §=2- g+ [Art. 56.]

1
2!"‘1
a5 we please Ly increasing = ; that is, the limit of § is 2 when
= is infinite.

Here S is a function of »n, aud can be made as small

267. 'We ghall often have occasion to deal with expressions
consisting of n series of terms arrenged according to powers of
some common letter, guch ag

a,+az+ ol el v

where the coefficients a, ¢, 4, @, ... are finite quantities
independent of x, and the number of terms may be himited or
unlimited.

Tt will therefore be convenient to discuss some propesitions
connected with the limiting values of such expressions under
certain conditions.
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268, The fimit of the series
ag+ax+ax +axti
when X ts indefinitely diminished is a,.
Suppose that the series consists of an 4n/inife number of termsy,

Let & be the greatest of the coefficients a,, ¢, @,, ...; and
let ug denote the given series by a,+.5; then

S<br+bd® +ba+ ... ;
and if 7 <1, we have S-:Téj:—m.
Thus when « iz indefinitely diminished, S can be made as
small as we please; hence the limit of the given series is a,.

If the series consists of a fnite number of terms, § is less
than in the case we have considered, hence & forfiori the pro-
position is true.

269. In the series
a,+ax+ax +ax’+ ...,

by taking x small enough we may make any term as large as we
please compared with the sum of all that follow it ; emd by taking
X large enough we may make any term as lorge as we please
compared with the sum of all that precede 1.

The ratio of the term " to the sum of all that follow
it ig
ax @

or 2
+1 u+E H
a 27 ra T

T .
aui-lx + a’n-tim +..

When x is indefinitely small the denominator can be made
as small as we please ; that is, the fraction can be made as large
as we please.

Agnin, the ratio of the term 2" to the sum of all that
precede it is

oz a

n— = or .
a, 2 ta gy a_y+a_y+...

where y:é.
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When z is indefinitely large, ¥ is indefinitely small; henece,
as in the previous case, the fraction can be made as large as
we please.

270. The following particular formn of the foregoing pro-
position is very useful.

In the expression

axt+a a4 +az+a,

=i

consisting of a finite number of terms in descending powers of =,
by taking = small enough the last term &, can be made as large
as we please cornpared with the sum of all the terms that precede
it, and by taking « large enough the first term e &* can be made
as large as we please compared with the sum of all that follow it.

Ezample 1. By faking n large enough we can make the first term of
n# = 5nd —Tn + 9 a8 large as we please compared with the sum of all the other
terms ; that is, we may take the first term n* as the equivalent of the whole
exprer-ihaien, with an exror as smsll as we plesse provided n be taken large
encugh.

3-'1:11 2z

Ezample 2. Find the limit of piyr ooy

when {1} « is infinite; (2 zis
280,
{1} In the numerator and devominator we may disregard ail terma hug

the first ; hence the limit ia % , 0T i}

L

(2) When z is indefinitely small the limit is —_8—4 , 0F — g

Ezample 3. Find the limit of \/ —= when z is zero.

Let P denote the value of the given expression; by taking logarithrus we
have

log P=é {log{1+=) ~log (1 -ax}}

8 b

Hercs the limit of log P is 2, and therefore the value of the limit
raquired i ¢2

T
=2 (1+x—+€+...). [Art, 226.]
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VANISHING FRACTIONS.

271.  Suppose it is required to find the limit of
%+ gx — 2{3?’
o —-a
when 2=a.

If we put x=a +4 then % will approach the value zero as «
approaches the value c.

Substituting & + & for o,

@ +ax -~ Ja' dakh+ &7 3a+h
- 2ah+d 2a+h’

and when % is indefinitely small the limit of this expression

5 =,

2
There is however another way of regarding the question; for

#+an-30' LQglzrle) a+la

wf—a’ | (w—a)(xsa) ax+a’
and if we now put w=o the value of the expression is

5> 8s before.

g 3
. . . &' +ax—-2a
If in the given expression — i We put m=a before

simplification it will be found that it assumes the form 9, the

value of which is indeterminate; also we see that it has thig
form in consequence of the factor x—a appearing in both
numerator and denominator. Now we cannct divide by & zero
Jactor, but as long as & is not absolutely equal to @ the factor
x—a may be removed, and we then find that the nearer z
approaches to the value ¢, the nearer does the value of the

fraction approximate to g, or in accordance with the definition of

Art. 266,

i 2
when 2 = a, the limit of m—::-—, ,2—a is g
- a 2
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272, If f{x) and ¢ (=) are two functions of #, each of which
becomes equal to zero for some particular value o of x, the

‘::Ez; takes the form g, and is called a Vanishing

fraction

Fraction.

Example 1. If =3, find the limif of
it o ik
23 -rl -3
When x=3, the expression reducea to the indeterminate form g ; but by
removing the factor £—3 from numerstor and denominator, the Fraction

-8 .
becomesaf Ak When x=23 this reduces to é, which {g therefors the

224 2x4 1"
reguired limit.

hecomes g when x=a.

To find its limit, multiply numerator and denominator by the surd con-
jugate to f3r-a— .Jz +a; the fraction then hecomes

{3z -a)-(r+a) or 2 .
(z-a) (,JSz—a—i—Jz_M}! i atofxta

whenea by puting x=a we find that the limit is -—1‘)—_—
il

Ezample 2. The fractions/3% = 2-A/2+2
-4

3
{—; becomes 9 when =1,

-3 0

To find ite limit, put z=1+% and ezxpaund by the Binomial Theorem.
Thus the fraction

Example 3. The fraction

1,1,
_1-(1+h)i=1’(”%"'?}'"*“')
1-(14+1)F 1-(1+-]1h—-2—-k’+.,,)

5 24
11
-'i_i'i“g-}l.— ......
;:Tl -
-"g—f‘;a-g}l-‘. .....

Now 2=0 when x=1; hence the required limit ia g

273. Sometimes the roots of an equation assume an in-
determinate form in consequence of some relation subsisting
between the coefficients of the equation,

H.H. A 15
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For example, if ax +b=cx +d,
(a—clz=d=0,

d-b

x= .

a—c¢

0
a simple equation is indefinitely great if the coefficient of & is
indefinitely small,

But if ¢=a, then = becomes , or a0 ; that is, the root of

274. The solution of the equations
ax+by+ec=0, az+by+d =0,

} be’ — B¢ ca’ —ca
is x = 3 = .
pr e S P (s

If ob’ —a'b=0, then x and » ara both infinite. In this case

’

i =7 = m suppose; by substituting for o, ¥, the second
a

e
equation becomes ax + by + — =0.
_m

It :?a is not equal to ¢, the two equations az+by+¢=10 and
azx+ by + %:0 differ only in their absolute terms, and being
inconsistent cannot be satisfied by any finite values of « and 4.

# i a’J » .cf .
TF < is equal to ¢, we have — = = = =, and the two equations
m e & ¢
are now identical.
Here, since b¢’' ~be=0 and ¢a’—c'a =0 the values of x and

each mssume the form %, and the solution is indeterminate. In

fact, in the present case we have really only ome equation
involving fwo unknowns, and such an equation may be satisfied
by an unlimited number of values. [Art. 138.]

The reader who is acquainted with Analytical Geometry will
have no difficulty in interpreting these results in connection with
the geometry of the straight line,
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278, 'We shall now discuss some peculiarities which may
arise in the solution of a quadratic equation.

Let the equation be
ax® +be+e=0.

If ¢ =0, then
o’ + b =10;

b
whence w=0, or ~—;

that is, one of the roots is zere and the other is finite.

If 5=0, the roots are equal in magnitude and opposite in
sign. [Art. 118.]

If =10, the equation reduces to bz +c=0; and it appears
that in this case the quadratic furnishes only one root,

e . . ;
namely — 7 But every quadratic equation has two roots, and in

order to diseuss the value of the other root we proceed as follows,

Write L for  in the original equation and clear of fractions;
thus i
e +dy+a=0.
Now put @ =0, and we have
ey +by=0;
the solution of which is ¥ = 0, or -—-s ; that is, z = oo, or — %

Hence, in any quadratic egquation one root will become infinite
if the coefficient of x* becomes zero,

Thiz is the forin in which the result will be most frequently
met with in other branches of higher Mathematics, but the
student should notice that it iz merely a convenient abbreviation
of the following fuller statement :

In the equation ax® + bz +¢ = 0, if @ is very small one root is
_very large, and as & is indefinitaly diminished this root becomes
indefinitely great. In this case the finite root approximates

to *‘% ag its lirit,

The cages in which more than one of the coefficients vanish
may be discussed in a similar manner,

15—2
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EXAMPLES. XX.

Find the limits of the following expressions,

{1} when #=wo, (2} when 2=0.
(25 8) (3—5x) (822 —1)2

Ta?—6z-+4 Toosv 9

(8+22%) (v~ 5) (#-3)(2-52)(3z+1)
(4°-9) (142" ’ @x-13 )
-2 1-2 (B—2) (x+5)(2-72)
2251 2a% ° " Tz} (r+1)8

3]

e

5,

Find the limits of

:z3+1 _ oF _ hx
o when o= -1 8.

T.

; when z=0.

em - e’ma

et—g7¥
W v When z=0, 10- &

NERRTErEny oy
Wser:
log (1 +2%4-2%)
32 (1-22)
1-x+logs
1—4/2z — 2%

, When r=a,

11,

, When z=2¢.

12, when #=0,

13 , when z=1,

1 4

% _ g PR

g & m2)1+(a x)i

(P =2+ (a—z)

N @y atta®—vaf —avtal
Vetz—-ya—-x

n —-n
16. {(&ﬂ) - -7-H—“~1} » when n=w.
% %

17. =nlog ; — , When a=cc,
(‘*53

18, atx , when 2=0,
a—z

, when x=qa.

15.

, when 2=0,



CHAPTER XXI.
CONVERGENCY AND DIVERGENCY OF SERIES,

276. Ax expression in which the successive terms are formed
by some regular law is called a series; if the series terminate at
some assigned term it is called a finite geries; if the number of
terms is unlimited, it is called an infinite series.

In the present chapter we shall usually denote a series by
an expression of the form

277. Suppose that we have a serles consisting of u terms.
The sura of the series will be a function of =»; if » increases
indefinitely, the sum either tends to become equal to a certain
finite limit, or else it becomes infinitely great.

An infinite series is said to be convergent when the sum
of the first = ferms cannot numerically exceed some finite
quantity however great n may be,

An infinite series is said to be divergent when the sum of
the first n terms can be made numerically greater than any finite
quantity by taking » sufficiently great.

278. If we can find the sum of the first » terms of a given
series, we may ascerbain whether it is convergent or divergent
by examining whether the serles remains finite, or becomey in-
finite, when = is made indefinitely great.

For example, the sum of the first n terms of the series

. 1-a"
l+zx+a’+a®s ... i8 - .
l-=




230 HIGHER ALGEBRA,

If = is numerically less than 1, the sum approaches to the

finite limit

1 -
2’ and the series is therefore convergent.

...‘m .
If x is numerically greater than 1, the sum of the first

n terms 1s , and by taking w sufficiently great, thig can

&
-1
be made greater than any finite quantity; thus the series is
divergent,

If 2= 1, the sum of the first #» terms is n, and therefore the
series is divergent.

If & = - 1, the series becomes
1-1+1w1a1~1+.....

The sum of an even number of terms is 0, while the sum
of an odd number of terms is 1; and thus the sum oscillates
between the values 0 and 1. This series belongs to a class
which may be called oscillating or periodic convergent series.

279. There are many cases in which we have no method
of finding the sum of the first n terms of a series. We proceed
therefore to investigate rules by which we can test the con-
vergency or divergency of a given series without effecting its
summation,

280. An infinite geries in which the terms are alfernately
positive and negative i3 convergent if each term i numerically
Lesg than the preceding lerm.

Let the series be denoted by
Uy — U+ Uy = W+ Yoy — Uy F e
where Uy T Uy T U UL Uy e

The given series ma.-y be written in each of the following
forms :

(w, ~w,) + (e, — 2w} +{w,—w,) + ........ ..., (1),

w, — (- ) — (0, — ) ~(uw,—w)— . (2.

From (1) we see that the sum of any number of terms is
a positive quantity ; and from (2) that the sum of any number
of ferms is less than «, ; hence the series is convergent.
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281. For example, the series
1 1 1 1 1%

._§+§—Z+5—-6+ ......

is convergent. By putting x=1 in Art. 223, we see that its
sum ig log, 2.

1

Agnin, in the series

2 3,45 61
1737371 57§70

each term is mumerically less than the preceding term, and the
series is therefore convergent. But the given series is the sum of
1 1 1 11

1_§+3—1+g—é+ ...... P (1),

and 1=TaloTl+l =l e, (@),

Now (1) is equal to log, 2, and (2) is equal to ¢ or 1 according
as the number of terms is even or odd. Hence the given series
is convergent, and its sum continuvally approximates towards
log. 2 if an even number of terms is taken, and towards 1 +log, 2
if an odd number is taken.

3892, An infinite series in which all the terms are of the same
sign is divergent if each ferm is greater than some findte quantity
however smatl,

For if each term is greater than some finite quentity g,
the sum of the first n terms is greater than na; and this, by
taking » sufficiently great, can be made to exceed any finite
quantity.

283. Before proceeding to investigate further tests of con-
vergency and divergency, we shall lay down two important
principles, which may almost be regarded as axioms.

I. If = serles is convergent it will remain convergent, and
if divergent it will remain divergent, when we add or remove
any finite number of its terms; for the sum of these terms is
a finite quantity.

II, I a series in which all the terms are positive is con-
vergent, then the series is donvergent when some or all of the
terms are negative; for the sum is clearly greatest when all
the terms have the same sign

We shall suppose that all the ferms are positive, unless the
contrary is stated.
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284, An infinite series is convergent if from and ufter some
Jied term theratio of each term to the preceding term is numerically
lesg tham some quantity which 1s itself numerically less tham unity.

Lot the series beginning from the fixed term be denoted by

AR T T T ;
., 1, o
and let e A s R ,
u, u, %,
where » < 1.
Then Wt + U,

w, W w, U, %,
= (1+—’+~—“.—“+—‘.——".-4+ )
1

U, Uy U U, W, U

<u (L+r+e®+ee V3

@,
that is, < —'—, since r < .
'?"

1-

Hence the given series is convergent.

285. In the enunciation of the preceding article the student
should notice the significance of the words “from and after a
fixed term.”

Consider the series

14 2¢432%+42"+ ... +a' T+
Hero _ML:&=(1+._L),5
%, , #wn-—1 n—1

and Dby taking n sufficiently large we can make this ratio ap-
proximate to @ as nearly as we please, and the ratio of each term
to the preceding term will u]tmmtely be w. Hence if z <1 the
series is convergent.

But the ratio EEEL will not be less than 1, until "_1. < 1;

n-=1

that is, until = = —L
l-x
Here we have a case of a convergent series in whicl: the torms
may increase up to a certain point and then begin to decrease.
99
For example, if AT then i lmzmo, and the terms do not
begin to decrease until after the 100%™ term.




CONVERGENCY AND DIVERGENCY OF SERIES. 233

286. Awn infinile series in which oll the terins are of the sume
stgn 18 diveryont 'af JSrom und after some fiwed term the ratio of each
term o the preceding term is greater than unity, er equal 1o unily.

Lot the fixed term be denoted Dy 2,. If the ratio is equal to
unity, each of the succeeding terms is equa.l to ,, and the sum
of n terms is equal to nu, ; hence the series is divergent.

If the ratio is greater than unity, each of the terms after the
fixed term is greater than u,, and the sum of n terms is greater
than nu, ; hence the series is divergent.

287. In the practical application of these fests, to avoid
having to ascertain the particular term after which each tern is
«reater or less than the preceding term, if is convenient fo find

the limit of —--‘-'— when # is indefinitely increased; let this limit
be denoted by X

If A <1, the series is convergent, {Art. 284

If A>1, the series is divergent. [Art. 286.]

If x=1, the series may be either convergent or divergent,
and a further test will be required; for it may happen that

a2 but continually approaching to 1 as ts Emil when n is

iﬁ&éﬁnﬁts@ increased, In thiz case we cannot name any finite
quantity r which is itself less than 1 and yet greater than A

Hence the test of Art. 284 fails, If, however,

tinually approaching to 1 as its limit, the series 15 1::liver-gent by
Arit. 286,

We shall use ”L%mu " ps an abbreviation of the words

n=1
“the limit of —-~‘?— wlien # is infinite.”
Fzample 1. Find whether the series whose nt term ie {n+ }_3:_ is con-
vergent ox divergent.
U, _(p+D)ar nx™l (rtl) (u—l)-

gy wt  (n- l)-‘ nd

Here

. U
Lim—=x;
Tn—1
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hence if 2«1 the series iy convergent;
if x> 1 the geries is divergent.
If #=1, then Lim 5’3—= 1, and & further test is required.
. n—L
Example 2. Is the series
184 9%+ 322t 4228 L
convergent or divergent?
im 2 =Lim e
Hare Lim - =Lim (i Ipae z.
Hence if 2 <1 the series is convergent;
- if z= 1 the series is divergeni.
Tf #=1 the series becomes 1%+ 224 8%+ 4%+ ., and is obviously divergent.
Example 3. In the series
a+ia+dr+lar2d) . +lat+n-lod) et
L Uy L a+fn-1d
Lim u,,_l'—Lzma-:» =22 b =

thys if r<1 the series is convergent, and the sum is finite. [See Art. 60, Cor.]

988, If there are two infinite series in each of whick all the
terms are positive, and if the ratio of the corresponding terms in
the two series 18 always finite, the two series are both convergent,
or both divergent.

Let the two infinite series be denoted by
Uy o+ By U Uy F e ,
and B, Y Y, E

The value of the fraction

I ¥ g N
VoF O F Y, R +v,
lies between the greatest and least of the fractions
u, B
—, =Lt Art. 14.
v, v’ v, [ ]

and is therefore a finite quantity, [ say;
U+ U+ b u = L e L )

Hence if one series is finite in value, so is the other; if one
serieg is infinite in value, so is the other; which proves the
proposition.
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289. The application of this principle is very important, for
by means of it we can compare a given series with an auziliary
sertes whose convergency or divergency has been already esta-
blished. The series discussed in the next article will frequently
be found useful as an auxiliary series.

290, The infinite seriey

13 1 1
‘17,+?F+§;+ Zi;‘r'...
15 abways divergent except when p s positive and greater thun 1.

Casep L Tetp=>1.
The first term is 1; the next two terms together are less than

9 _ .

55 the following four terms together are less thang; 5 the fol-

lowing eight terms together are less than —;-,; and so on. Hence
2

the series is less than 1+ Bt 8—81,4-...5

_that is, less than a geometrical progression whose commeon ratio

‘)
:):F is less than 1, since p =1 ; hence the series is convergent.
)

Cage II. Let pe=1.

. 1 1 1 1

The series now becomes 1 + grytgtEt

The third and fourth terms together are greater than % or % ;
the following four terms together are greater than g or é ; the
following eight terms together are greater than 1% or % ; and s0
on. Hence the series is greater than

1 1 ¥ 1.1
+§+§+ § +-2-+.H,

and is therefore divergent. | Art, 286.]

Case ITI. Let p <1, or negative.

Bach term is now greater than the corresponding term in
Case I1., therefore the series is divergent.

Hence the series is always divergent except in the case when
p is positive and greater than unity.
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Exainple. Prove that the series

2 3 é ot n+ 1
1 4 9
is divergent.
I 1 1
Clompare the given series with 1 L R e

Thus if w, and v, denote the w*" terms of the given series and the
anziliary series reapectwely, we have

Uy -
v, ® n 7

hence Lim - ’5- =1, and therefora the two series are both couvergent or both

divergent. But the auxilisry series is divergent, therefore also the given
series is divergent.

This completes the solution of Examplie 1. Arf. 287.

291. In the application of Art. 288 it is necessary that the
limit of %‘ should be finite ; this will be the case if we find our
aunxiliary Series in the following way :

Take w , the n™* term of the given series and retain only the
highest powers of ». Denote the result by v ; then the limit of

Zf;’: is finite by Art. 270, and v, may be taken as the n' term of

the anxiliary series.

. I
Example 1. Shew that the series whose ' term is -jyfem=c—u; ln
NI =
divergent.
As 2 increases, u,, approximates to the value
J:Zm 42 1
‘\/3,33' or 3+ 1

Y]

Eence, if v,= 1 , we have Ltm—v_—“‘L, which is & finifa guantity;
ﬂll V’I
therafore the geries whose wbt ferm is Ll way be taken as the suxiliary
nis
geries. But this series is divergent [Art. 260]; therefore the given series is
divergent.
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Ezample 2. Tind whether the series in which

Up= B+ L -1
ig sonvergent ox divergent.

3
1
Here M, =T (/\/1—}—;5—- 1)

1 1
=" (l-l- w—g}a—s-i- . -—1)
11
T R

If we take v,,:;%ﬁ » we have

"R

1

k) _1 +
o, 8 GwT
o Tam a1
.~ Lim %3
But the suxiliary series
1,11, 1
e - 5 T 57 ...E'F...

js convergent, therefors the given series iv convergent.

292, To shew that the expansion of {1 +x) by the Rinomial
Theorem 18 convergent when x < 1.

Let 2, u, ,, represent the v and (»+ 1) terms of the ex-

a
pansion ; tahen

When r=n+1, this ratio is negative; that is, from this
point the terms are alternately positive and negative when
is positive, and always of the same sign when x i negative.
Now when # is infinite, Lim ! =2 numerieally; therefore

U
- - n r »
since x < 1 the series ia convergent if all the terms are of the
same sign ; and therefore e fortdor it is convergent when some of -
the terms are positive and some negative. [Art. 283.]

293. To shew that the expansion of a* in ascending powers
of x i3 convergent for every value of x.

w, xlog.a .

Here —- = —-—g—i— ; and therefore Lim -~ <1 whatever be
- m— -1

u=1 . . ES

the value of x; hence the series is convergent.
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204. To shew that the expansion of log (1 +x) in ascending
powers of X 48 convergent when x i numerically less than 1.

Y ”._;1 x, which in the limit

Here the numerical value of

is equal to =; hence the series is convergent when « is less than 1.

If =1, the series becomes 1-%-&-%—%-# ..., and is con-
vergent. [Art, 280.)
If ©=_1, the series becomes -1—%— % - %-— ..., and is

divergent. [Art. 200.] This shews that the logarithm of zero is
infinite and negative, as is otherwise evident from the equation
e =0

295, The results of the two following examplesare important,
and will be required in the course of the present chapter,

Ezxample 1. Find the Hmit of lii—x- when x is infinite,

Put r=e¥;: then

1, z ¥y _ Y

T "“ev_ yz yx
1+3{+E+I—3+.“
1 ¥y ¥ ’
ot lag +imt
vy

Ezample 2, Shew that when n is infinite the limit of ng"=:0, when 2 <1,
Let ::=$r , B0 that y=1;

slgo let y*=¢, so that nlogy=log z; then

_n _llogz 1 logz

Tyt Tz logy logyt 2
Now when n ig infinite z ie infinite, and 1c‘—i—'5=(.'i; also logy is finite;

therefors Limngn=0.

296. It is somefimes necessary to determine whether the
product of an infinite number of factors is finite or not.

Suppose the product to consist of # factors and to be denoted by

WUy e U

then if as n increases indefinitely w <1, the product will ulti-
mately be zero, and if 4 > 1 the product will be infinite ; hence in
order that the product may be finite, 2, must tend to the limit 1.
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Writing 1 + v, for u_, the product becomes
(Q+o) (L+v)(1+) ... (I +w).
Denote the product by P and take logarithms ; then
log P=log (1 +v)+log(l +2) + ...+ log{l +v)

and in order that the product may be finite this series must be -
convergent. .

Choose as an auxiliary series

v — =2+
Now Lim k)i(:;-i?-’l)- = Lim < ) =1,

" L]

since the limit of #_is 0 when the limit of u_is 1.

Hence if (2} is convergent, (1) is convergent, and the given
product finite,

Exzample. Shew that the limit, when » is infinite, of
13365057 2n-1 2n+1

2'2°8'2'6°6 " 2n o

is finite.

The product consists of 2n fectors; denoting the suceersive pairs by
8, , Uy, &y, ... B0d the product by P, we have

Pty tptty erns. Uy,
2n-1 Zn+l 1
where Upmrmee s =1 s
but log P=logu, +logu,+loguy+... +log u, .........(1),
and we have to shew that this series is finjte.
Now log u,=log (1 - ‘:?);—_Ii‘u’é%_--d

thersfore as in Ex. 2, Art. 201 the series ia convergent, and the given produet
is finite.

297. TIn mathematical investigations infinite series oceur so
frequently that the necessity of determining their convergency or
divergency ig very important; and unless we take care that the
series we use are convergent, we may be led to absurd conclusions,

[See Ari, 183.]
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For example, if we expand (1-&)* by the Binomial Theorem,
we find

(1—m)‘*=1+2x+3x9+4a;3+ .....

But if we obtain the sum of n terms of this series as ex-
plained in Art. 60, 1t appears that

n

_ =2 g
T e 1-w’

—1

1+2x+32"+ ... +m

1 o o
—_— = 9 o g —— .
a=a) 1+2z+ 32"+ + 15 +(1—:1:)’+1-—m

. 1
By making = infinite, we see that (1_7"')} can only be re-

garded as the true equivalent of the infinite series

1 +82c+ 32 +42%+.....

when (—l-i—um), + lﬁ—% vanishes,

If » is infinite, this quantity becomes infinite when o =1,
or z>1, and diminishes indefinitely when =<1, [Art. 295] so
that it is only when 2 <1 that we can assert that

-—1-—=1+2m+3x’+4x3+ ...... to inf.;

(==

and we should be led to erroneous conclusions if we were to use
the expansion of (1 - z)™® by the Binomial Theorem as if it were
true for all values of 2. In other words, we can introduce the
infinite series 1+ 22+ 32°+ ... into our reasoning without error
if the series is convergent, but we cannot do so when the serieg
is divergent, ) :

The difficulties of divergent series have compelled a distinetion
to be made between a series and its algebraical egutvaient. For
example, if we divide 1 by (1 -zx)°, we can always oltain as
wany terms as we please of the series

T4 22+ 3"+ 4%+ ...
: ; 1
whatever & may be, and so in a certain sense Ty may be
-

called its algebraical equivalent ; yet, as we have seen, the equi-
velence does not really exist except when the series is con-
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vergent. It is therefore move appropriate to speak of (Tl—“';)-,
as the generating junction of the series
T4 Be4 32+ ..

being that funetion which when developed by ordinary alge-
braical rules will give the series In question.

The use of the term generating function will be more fully
explained in the chapter on Recurring Series.

EXAMPLES. XXI, a.

Find whether the following series are convergent or divergent:
1 1 1 1

z rta x+2a &+3a ’
z and ¢ being positive quantities.
1 1 1 1
'}-‘—.§+2.——3+?‘).—4+4—‘-5+ ......
PSS SO PR SRy
"y @) @+ F+2) @I (y+3) T T
zand y being positive quantities.

& o a® zt

2.

4, ﬁ+ﬁ+37+ﬁ+
& a° 2 2t
¢ 3% 4%
6 Yrgrmrgt

8. 1+43x+5a3+Ta% 824

2 . 3 4 5
9. i".+.2’."+3_7’+a;”+"""
a2 a0 o
10. 1+2+3 +1—0+.--+”3:'i (AEPREE ]
RV JOK NN 0 IR ik JENE
. & 5-’5 16 +17 b

H H A 16
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12. 1+§x+gz¢3+i—;r‘*+ +Z +1.7;""1+ ......
o Lelelidie

14 %+3—“f+4;t+.“+(?i?';§f ......

R e
16, 1+210+ +33 44—&- ......

17. Test the series whose general terms are
(1) JEFl-n (2) R - i1

18. 'Test the series

1 1 1 1
1) ;;{-m*i*m‘i‘m-}- ...... .

1 1 1 1 1
@ roatsmtesitiee

2 being & positive fraction.

19. Shew that the series
9p 3¢ 4
1+E+E+E+......

is convergent for all values of p.

20, Shew that the infinite series
U+ Uy T Uyt
iz convergent or divergent according as Lim Ju, is <1, or = 1.

21, Shew that the product
2 2 4 4 6 -2 2n-2  Zn
1-3°8°3°5 "9 3 @nci 2u-l
is Anite when % is infirrite.

. 82 Shew that when x=1, no term in the expansion of (I+a7* s
infinite, except when » is negative and numerically greater than unity,
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*208. The tests of convergency and divergency we have
given in Arts. 287, 291 are usuwally sufficient. The theorem
proved in the next article enables us by means of the auxiliary
series

1 1 1 1

-]-.~P+~2P+§F+ . +£§’+'"
to deduce additional tests which will sometimes be found con-
venient. :

*298,  If uy, v, are the general ferms of two infinite series
in which «ll the termns are positive, then the u-series will be con-
vergent when the v-series is convergent if after some purticular ferm

u v, L . -
2 -2y and the u-series will be divergent when the v-series is

un—1 vn_l

- . 1 v,
divergent if ~2- > —=-,
gy Vo

Let us suppose that 4« and o, are the particular terms.

w, v, w, ¥
Casp I. Let 2<-2, 22 ... ; then
woow ' ow, W

<u1(1+—’+—3.—’+..,>5

3 %,
that is, -:;'! (v, +o,+u, + )
1

Hence, if the v-series is convergent the w-series ig also con-
vergent,
v,ou, v

oL,
Casp LI, Let 22, fx_2 ; then
ul | o %

2
=1

16—2
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' L
3 L
that is, . > = (m+v,+v, + ...}
1
Hence, if the wv-series is divergent the w-series is also di-

vergent.
*300. We have seen in Art. 287 that a series is convergent
or divergent according as the limit of the ratio of the n™ term

to the preceding term is less than 1, or greater than 1. In the
remainder of the chapter we shall find it more convenient to use
this test in the equivalent form :

A series is convergent or divergent according as the limit of
the ratio of the #'™ term to the succeeding term is greater than 1,

or less than 1; that is, according as Lim s 1, or<1.
o+l

Similarly the theorem: of the preceding article may be
enunciated :
The «-series will be convergent when the v-series is convergent

provided that Lim — > Lim—2; and the wseries will be di-

a4+ LE
vergent when the f.u-seriles is diveréent provided that

)
= Lim—2

n+t at+]

*30).  The series whose general term is u_ 13 convergent or di-
vergend c&ccordingasLim{n( b }:»1, or <1,

Let us compare the given series with the auxiliary series

Lim

whose general term » is v

When p=>1 the auxiliary series is convergent, and in this
case the given series is convergent if

(3195’ or (1 + i)';

uﬂ“‘]
that is, if ;.1.;.11{g P(P ;3
uﬂ‘t‘l
or -n.( e -.1)>p+7’(p LI
Y1

that is, if me{ (E- - )} =
un'l-l.



CONVERGENCY AND DIVERGENCY OF SERIES. 245

But the auxiliary series is convergent if p iy greater than 1
by & finite quantity however small; hence the first part of the
proposition is established.

When p<1 the suxiliary series is divergent, and by proceed-
ing as before we may prove the second part of the proposition
Example. Find whether the series
2 1 2 1.3 2 1.38.85 =27
iteztea sty e T
is eonvergent or divergent.

Here Lim ;‘fi =$; henes if z<1 the series is convergent, and if z=1

. 1
the series is divergent.

Ifx=1, Lim u:“ =1. In this caze

+1

Ty In@Atl)
oy @n-1) @n-1)
. AN L VR
R (“m-: )= (@n-1p"
- Limin(-ﬂ-— ) :%;
iy 2
hence when z =1 the series is convergent.

and

*302, The series whose general term 18 1, is convergent or di-

. . i}
vergent, according as Lim (n log -u—‘f-) =1, or < 1.
el
Let us compare the given series with the series whose general

1
term is —.
k5

When p=1 the anxiliary series is convergent, and in this
cose the given series is convergent if

o (1 L 1)"; [Axt. 300.]
m+ L n

hat is, if Jog -2 > p lo, 1+1—)-

that is, 1 og =p g( nt’

. ”
or if Jog—* =
%
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%, ) o
un-'-'l pl

Hence the first part of the proposition is established.

When p<1 we proceed in a similar manner; in this case the
auxiliary series is divergent.

that is, if Lim (n log

Brample. Find whether the zeries
252 Bt 4fxt 5%

TETETRETE
s convergent or divergeat.
Uy, Rtz (n_!_]_)nﬂ gntl nn _ 1 )
Here B = - = =
Unp1 [P jpt+1 fn+lj*z (1_*_%)“3’
. Lim % = ;lx . [Art. 220 Cor.].
+1

. 1 I ; 1 e
Henee if £ <=~ the series is convergent, if x> = the series is divergent.
e e

If x:l—;,then M F

U - (1 +}—')n 5
n

1
~. 1o -35‘...:10 e—-mnlo (1+—)
8 g o4

1 1
=1- n( 311.3 )

_gﬁ-%+-. H
1
. 'nlog—-z:j—ﬁ :

henea when z:.—%' the series is divergent.

s =1, and also Lm{ (f - 1)} =1, the
tests given in Arts. 300 301 are not Azi.pphca.ble“1

To discover a further test we shall make use of the auxiliary

. . 1 .
scries whose general term i —————. In order to establish
7 {log )
the convergency or divergency of this series we need the theorem
proved in the next article.
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*304, If ¢ (n) is positive for all positive integral values of n
and continually diminishes os n increases, and of a be any positive
integer, then the two infinile series

(1) + $(2) + $(3) + .o+ () + ..,
andd ap{a) + 2’¢p(a") + a’p{a’) + ... +apla) + ..., -
are both convergent, or both divergent.

In the first series lat us consider the terms

dlat+1), ¢{a*+2), ¢la*+3), ..... dla*t) L (1)
beginning with the term which follows ¢(a’). -

The number of these terms is ¢**' - &', or «'(z—1), and each
of them is greater than ¢(a"*"); hence their sum is greater than

o*{a— 1) p(e**"); that is, greater than a-1, a* ¢ (@),

By giving to % in succession the values 0, 1, 2, 3,... we have

B2+ $(3)+ (4} 4. + pla) > =

1
x ah(a);

-1, a’{a’);
therefore, by addition, 8§, — (1) =277 S

where §,, §, denote the sums of the ﬁrst and second series respec
tively; therefore if the second series is divergent so also is the
first.

Again, each term of (1} is less than ¢(a'), and therefore the
sum of the series is less than (¢ — 1) x a'¢(a").

By giving to & in succession the values 0, 1, 2, 3... we lave
P +p{)+p(d)+ L Fpla) < {w—1) x @(1);
dpla+t1}+ple+D +dla+3)+ ... +¢{e’)<{a-1) % ag(a};

therefore, by addition

S~ () <{a-1{S, + ()}

hence if the second series is convergent so alse Is the first.

Noreg. To obtain the general term of the accond series we fake ¢ (#) the
general term of the first series, write a® instead of & and muliply by«
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*305. The serics whose general term 1s i3 convergent

if p =1, and divergent if p=1, or p<1.

By the preceding article the series will he convergent or
divergent for the same values of p» as the series whose general
term is

n {log n)®

3 or 1 or 1 % 1
&“‘(IEQE‘")‘P ! (nloga)™’ (logay = w*’

L

.
. The constant factor ~—, is common to every terr ; there-
(log @)*
fore the given series will be convergent or divergent for the same
values of p as the series whose general term is 7 Henee the

required result follows, [Art. 280.]

*308. The series whose general term i3, & convergent or di-
vergent according as Lim [{n (u‘.‘l - 1)— 1} log n:r =1, or <1,

uh

+

Let us compare the given series with the series whose general
term is W.

When p>1 the auxiliary series is convergent, and in this
case the given series is convergent by Art. 299, if

Yo g e Dlloglar Iy (1).

Now when = is very large,
log (n+ 1} =log» + log (1 +}J =logn+ i, nearly ;
Hence the :':ondition (1} becomes
e (0 i)
) n, nlogmn
that is, el >(1+1)(1+J"_);
% ” nlogm

t;hatis, “ >1+}+ b R
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or ‘ﬂ.( y =14+ P_ ;
ull“i log
or {n 3"—»—1)—1}10gn>p
a1

Hence the first part of the proposition is established. 'The
gecond part may be proved in the manner indicated in Art. 301.

Hrample. Is the seriea
20 22 4T 22, ("52

Hata s +32 Tt
convargent or divergent?
_ @yl L1
Here m_w_l-{-;.‘hi_n—ﬂ ........................ (1).
o Lim — =1, end we proceed to the next test.
Unta
Fr 1 n )—1 -}—l 3
om {1}, = Y =1+ . eervar e (B).
-, Lim {‘H. ( Hn_ )} =1, and we pass to the next test.
Untr
U __logmn_
From (2], {n (5;1-_1 - 1) -1} ogn = ol
. Lim [{u (—Qf“——— 1) - l}log n ].—=0,
LY
singe Lim l_g_n =0 [Art. 208]; hence the given saries is divergent.

*307. We have shewn in Art. 183 that the use of divergent
series in mathematical reasoning may lead to erroneous results,
But even when the infinite series are convergent it is necessary to
exercise caution in using them,

For instance, the series
] 23 t b
RN E R
is convergent when 2=1. [Art. "80:[ But if we wmaltiply the
series by itself, the coefficient of #* in the preduet is
1

: i 1
-—-24- — + i I i T & =,
:/Qn J?aa—] ,1;2.:/21&—2 NP LT :/:?m

1wzt
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Denote this by &

an

; then since
L ! or = 1
= —
Gr Pomer gy T T

, and is therefore infinite when # is infinite.

n+l
2 ,\/ﬂ
If x=1, the product becomes

Uy — Gy + Gy — By ooe o By = Gy Ty g ey

and since the terms g, , 4, . are infinite, the series has

_ ) ot Vgak ) TP
no arithmetical meaning,
This leads us to enguire under what conditions the product
of two infinite convergent series is also convergent.

#308, Let us denote the two infinite series
@, + v+ a@ +axd + .+ e @+,
b, +bm+bat + b L b+

k0

by 4 and B respectively,

If we multiply these series together wé obtain a result of
the form
ab, +(ab,+ab)r+ (@b +adb +ab)a®+. ..

Suppose this series to be continued fo infinity and let us
depote it by ('; then we have to examine under what conditions
C may be regarded as the true arithmetical equivalent of the
product 4.8,

First suppose that all the terms in 4 and B are positive.

Let 4,, B, , €, denote the series formed by taking the first
9 + 1 terms of A, .;3, ' respectively.

If we multiply together the two series 4, , B, , the coefficient
of each power of x in their product is equaf to the coefficient of
the like power of = in ' ag far as the term 2*; but in 4 5B,
there are terms containing powers of x higheér than «™, whilst
2™ is the highest power of 2 in €, ; hence

A, B, =C

Ry

I

If we form the preduct 4 B, the last term is « b 2™ ; but
(', includes all the terms in the product and some other terms
besides; hence

¢, =4 8.

an
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Thus €, is intermediate in value between 4 B and 4, 7,
whatever be the value of n. '

Let 4 and B be convergent series; put
4, =4-X, B=B-7,
where X and ¥ are the remainders after n terms of the series
have been taken; then when = is infinite X and Y are hoth
indefinitely small,
AB=(4d-){(B-Y)=AB-BX-AY+ XY,

am

therefore the limit of 4 B is 4B, since 4 and B are both finite.
Similarly, the limit of 4, B is 4.8.

111

Therefore ¢ which is the limit of !, must be equal to 48
since it Jies between the limits of 4 B and 4 2

Mt -T'
Next suppose the terms in 4 and B are not all of the same
sign.
In this case the inequalities 4, B > C, >4 B are not
necessarily true, and we cannot reason as in the former case.

Let us denote the aggregates of the positive terms in the
two series by P, F’ respectively, and the aggregates of the
negative terms by ¥, V'; so that

A=P-N, B=P_X.

Then if each of the expressions P, 7, ¥, &' represents a con-
vergent series, the equation

AB=PFP - NP~ PN+ NN,

has a meaning perfectly intelligivle, for each of the expressions
PP, NP, PN, NN' is o convergent series, by the former part
of the proposition ; and thus the product of the two series 4 and
B is a convergent series.

Hence the product of two series will be convergent provided
that the sum of all the terms of the same sign in each is a con-
vergent series,

But if each of the expressions P, N, P, N' represents a
divergent series (as in the preceding article, where also P'= £
and N'=2), then all the expressions PP, NP, PN, NN are
divergent series. When this is the case, a eareful investiga-
tion is necessary in each particolar example in order to ascertain
whether the product is eonvergent or not.
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*OXAMPLES. XXI. b.

Find whether the following series are convergent or divergent:

1 22 1.3.5 2 1.3.5.7.0
L 1+3- 37536 8 "33.6.8.10" 12

3 3.6, 2.6.9 3.6.9.12
2 l+srt ettt e ® Ty J0. 1. 18% T

gt 92, 47 92 41 g
3. @yt gty T gt T

Qe 3 4347 Higt
4. 1+J—§+—J§j+ i4 + Ii+ ......

L Ex‘i—

5. 1+ +Lx2+43.

1.3 103,50
et gt E T T

a(l — &) (1+a)a1 —a) (2 —a)
12, 22
L @rtaal-0)@-0E-q)
1822 32

7. 1+

e being a proper fraction.

g %%, (o + 25 (a-l:a.z:)S_l_ .....
1 2 2

9. 14% a- 8 +a(a+1)B(ﬂ+1}
SRR -y 1.2,y (y+1)

+a(a+1) (2+2) BE+1)(B42) ,
1.2.3. y(y+ D iy +2)

10, 2%(log 2)7+ 2 (log 3¢ + 24 (log )7 +......

a{a+1) + a(e+1) (u+2)

1. 14a+ T8 3.3 T

12, It = _athAnt T Bkt Ot 3y

Upyqy B oRE 1+b?i"‘2+cﬂ," L
integer, shew that the series = +u2+153+ ...... is convergent if
A ~n—1 is positive, and divergent if 4 —e~1 is negative or zera

, where k£ is a positive



CHAPTER XXIL

UNDETERMINED COEFFICIENTS.

309. Im Art. 230 of the Flemenlary Algebra, it was proved
that if any rational integral function of & vanishes when x=g,
it is divisible by @ ~ @. [See also Art. 514, Cor.]

Let Pt pat T e pE T A L +p,

be a rational integral functien of x of » dimensions, which
vanishes when = is equal to each of the unequal quantities

&, E, a4 @

1 Bgy yy eeees G

Denote the function by f{x}; then since f{w) is divisible
by - @, we have
Flay=(x-a){pz" + ..., ),
the quotient being of n—1 dimensions.
Similarly, sinee f{z) is divisible by = — a_, we have

pET E = (w—a,) (P "+ ... )s
the quotient being of » — 2 dimensions ; and
P+ L ={x—a){pa" >+ .0 )-

Proceeding in this way, we shall finally obtain after » di-
vislons
F @)=, ) (5= ) (£ =) cor. (5= ),
310. If a rational entegral function of n dimensions vanishes

Jor more than n values of the variable, the coefficient of euch power
of the variable must be zero.

Let the function be denoted by f{x}), where ,

F@)=px+p 2" 4 pa 4 L



254 HIGHER ALGEBRA,

and suppuse that f(x) vanishes when wx Is equal to each of the

unequal values @, dy, @, -..... @,; then

F@)=p, (=) (5= a) (@-a) .. ().

Tet ¢ be another valne of x which makes f(x)} vanish; then
since f{c) = 0, we have

pole—a){e—a)fe~a,) ... (c—a}=0;

and therefore p =0, since, by hypothesis, none of the other
factors is equal to zero. Hence f (x) reduces to

n—3

—1 -t
plm" +pﬂaf" +pETTF +p -

By hypothesis this expression. vanishes for more than n values
of z, and therefore p, = 0.

In a similar manner we may shew that each of the cceflicients
Pyr Pys ooeeee p, must be equal to zero,

This result may also be enunciated as follows :

If o rational tntegral function of 1 dimensions vanishes for
meore than n values of the variable, it must vanish for every valee
of the variable,

Cor. TIf the fumction f{x) vanishes for more than n values
of z, the equation f (z) =10 has more than = roots,

Hence also, if an equation of n dimensions khas more than n
rools it 15 an identily,

Ezample, Frove that

{z—b} (—c} {x—c) (z—0a) . {z - a) {x—b)=1
fe-b)la—c) ((p-cj(b-a) {c—a) (c-&)
This equation is of fwo dimensions, and it is evidently satisfied by each
of the three values a, b, ¢ ; henee it is an identity.

311.  If fwo rational integral functions of n dimensions are
-equal for more than n values of the variable, they are equal for
every value of the variable,

Suppose that the two functions

P PR T + .,

AR A - S +q,,
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vanishes for more than #n values of 2; and therefore, by the
preceding article,

pov—(]‘,:o, ‘?)1‘—9’1=0, 2‘12-—-92:0, """ P4"9n203
that is,
pu:gui ?JJ zqﬂ 1)2'_"_72: “““ Pu-:qu’

Hence the two expressions arve identical, and therefore are
equal for every value of the variable. Thus

if two rational inteyral functions wre identically equal, we may
equate the cogfficients of the like powers of the variable.

This is the principle we assumed in the Elementary Algebra,
Art. 227,

Cor. This proposition still holds if one of the functions is
of lower dimensions than the other. For instance, if
P e T p T T +p

R

2 ;-3
=g T4 g™ L .,

we bave only to suppose that in the above investigation =0,
¢, =0, and then we obtain

D=0y =0 Pe=qo Py= s oo =4

312. The theorem of the preceding article is usually referred
10 as the Principle of Undetermined Cogfficients. The application
of this principle is illustrated in the following examples.
Izample 1. Find the sum of the series
1,242,348 . 44, oo tn(n+l).

Agsume that
1.242.83+8. d+ . Fuln+l)=d+Bn+Cri+ D7+ Enty
where 4, B, C, D, E,... aro quantities independent of n, whose values bave
to he detcrmined. .
Change n into n+1; then
1.242.83+..+nm+I)+{n+l) (n+2)
=A+Bu+L+CEe1F+D R+ 1P+ 5+ 1)+
By subtraction,
4+ D) (n+2)=B+ ¢ (@4 1)+ D (32 4+ 3n+ 1) + & (@07 + Onf ot 1) 4 L
Thia equation being true for all integral values of n, the coeflicients of the

respective powers of u on each side muat be equal; thus & and all succeeding
coefficients must be equal to zero, and
3b=1; 4D+%C=8; D+C+Dh=2;
1 2

=3, =1, B=.

whence D 3
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2 1
Hence the sun: =44 ?n R R §n8_

To find A4, put n=1; the series then reduces to its firet term, and
Z=d+2 or 4=0,

1
Hencs 1.2+2.3+3.4+...+n(n+1}=§n(n+l) {n+2).

Kore. It will be seen from this example thaé when the n™ term is a
rational integral function of =, it iz sufficient to assume for the sum =2
funetion of n which is of one dimension higher then the n" term of the

series.
Ezample 2, Find the conditions that «* + pa® + gz ++ may be divisible by
: £2iazsb
Asgume B pRtgetr=(r+ B {?+az + ).
Equating the coefficients of the like powers of x, we have
hta=p, ak+b=q, Eb=n
From the last equation k:% ; hence by substitution we obiain
r
b
that is, r=> (p —a), and ar=> (g - b);
which ave the conditions required.

+a=p, aad %r+ b=q:

EXAMPLES. XXIIL a,
¥Find by the method of Undetermined Coefficients the sum of
1. 124324524724 o » terms,
2 1.2.3+2.3.44+3.4.54...ton terms.
3 1.2242,3%43. 444544 to n terms,
4 B+B+554+T4, b0 » terms.
5. 142443ty 44y ton terms.

6. Find the condition that 2®—3px+42¢ may be divisible b
factor of the form 224 2w + a2 # ! v e

7. Find the conditions that «s®+ ba+ox + d may be a perfect cube,

8. Find the conditions that o%zf+bad+cw?+der+£2 may be a
perfect aquare.

9. Prove that ea?+2bay 4 cyt+2dr +Sey-+7F is a perfect sguar
£ o, oo e ¥ Y+ Y Y+ is 8 P quare,
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10, If w034 b2 et d is divisible by 27+ B prove that ad=>e
11, If &%~ Byw+4r is divisible by (¢ ¢)?, shew that ¢?=rt
12, Prove the identitios:
adlx-D{e—a) Ble—-c{z-a) Flr—a)v-F
B ahe-e T G90-5 T le—a)ie-b)
(x=B)z—c){z—d) (z-e)(z—d){r-a}

@ @he=Dta=a T T 6-d B4
(c=d(o—a)(z=b) (e=a)(z-b)(v=c) _
=) -wyle=b)  (@~a)({@~d)ld-a) =

13. Find the condition that
axt 4 Bhay + byt + 202 + Bfy +o
may b the product of two factors of the form
pEHGy+r, OE+gy+r.

2

=4

14, If é=lz+my+nz, p=nx+ly+mne (=mrtny+ls and if the
same equations are true for all values of z, 7, z when £, n, { ore inter-
changed with &, g, # respactively, shew that

Biomn=1, mi+2n=0, n'+2Amn=0.
15. Shew that the sum of the products n—r together of the =
quantities &, & a¥, ._u* s

(a"“ —- 'l) (a“” - 1).“(!.1" - 1)_0’1‘,(,,_,-](“_,-”},
g -1 af~- 1) (a7~ 1)

313.  If the infinite serdes a, +ax + ax +ax’+ ... s equal
to zero for every finite value of x for which the series is convergent,
then each coefficient must be equal {o zero identically.

Let the series be denoted by .5, and let S, stand for the ex-
pression &, + ¢+ o+ ; then §=g +a&f, and therefore,
by hypothesis, a,+wS, =0 for all finite values of 2. But sinee §
is convergent, &, cannot exceed some finite Mmit; therefora by
taking = sinall enough S may be made as small as we please,
In this case the limit of 5 is @, ; but & is ahweys zero, therefore
a, must be equal to zevo identicully.

Removing the term «,, we have a8, - O for all inite values of
x; that is, @ +ax g’ + ... vanisles for all finite values of 2.

Similarly, we may prove in succession that ench of the
coefticients a,, «,, «,,...... is equal to zero identically.

H. 1. A, 17
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314, Jf two infinite series are egual lo one another for every
Jinzte value of the variable for which both series are convergent, the
coefficients of like powers of the variable in the two series ave equal.

Suppose that the two series are denoted by

a, +ax+ax’ + o+ ...
and, A+dp+ A+ A+ ... ;
then the expression
ay—d,+ (o, - A)w+(a,— Ao +{a,~ A )"+ ..

vanishes for all values of & within the assigned limits; therefore
by the last article

a,~A4,=0, a,~4,=0, a,— 4,=0, g, —A =0,......
that is, ay=A, a =4, a=4,a=4,.... :
which proves the proposition.

]

2t in a series of ascendin wers of = as fi
Trz-1° g powers of = ar

Ezample 1. HEipand
es the termn involving «*.
2+ 27
14—t
where ¢, ¢, iy, &y,.., aTe constanis whosa values are to be determined ; then

Yet =yt @+ a1+ agtt

2raf=(1+a~-2% (gt a2 +ay+aysi+ ..}

In this equation we uay equate the coeffieients of like powers of = on
each side. On the nght hend side the coefficient of 2* is @, +a, | ~a,,,
and therefore, eince x* i the highest power of z on the left, for ail’ values of
1> we have

Aptp —Gpg=10;

this will suffice to find the successive coefficlenta after the firat three have
been obtained. To determine these we have the equations

ag=2, a,+ay=0, ay+a,—u;=1;
whence ty=2, ay= -2, gy=5.
Alsa tig+ay—a; =0, whence ag= ~7;
a,+a;— =0, whenee a,=12;
and ag+e,- 2;=0, whence a;= ~ 19;

PR
h — =23 bxt— Dad 3
thus T o Bt — Tl 1228~ 1008 4 |
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Fzample 2. Frove that if n and r are positive integers

W17+ n"—%]ﬂ {n— 2]"—51(7&—_1‘%—(@ {8y .

iz equal to 0 if + be less than », and to in if r=n,

3 3 xh n
We liave *— 1jt= RN
{e£-1) (“E+13+54+ .
=x"+terma containing higher powers of z.. {1}
Again, by the Binomial Theorem,

{ex—1}n=em=_mm—ﬂu"—ll‘—_‘z-l-]em-W- vy eemenne(2)e

By expanding each of the terms ¢™%, &=D%  we find that the coefficient
of £ in (2} is

o L[-u.vl)" &-_-_!_}'i?_:?)_"_n(n—l) {n-2]. (u—ﬂ)f_h .
- 2 2. L

and by equating the coefficients of 2% in (1) and (2) the result follows.

Example 3. If y=ar+dzttext+ ... y
express z in ascending powers of y as far as the ferm involving 5.

Agsuma a2=py+qyrtrret 4.,

and suhstitate in the given series; thus
y=alpy+ay+rl+ JHb ey ot e (pyt e+ P
Rquating cosfiicients of like powers of ¥, we have

1
ap=1; whencep:a.

[
ag+bp*=0; whenee g= _a—;.

261 o
ar+ 2hpy +ept=0; whence r= T

' byt (21— ac
Thus z:%-%+(.._.as. ]ys+

Thir is an example of Reversion of Series.

Cor, If the series for ¢ be given in the form
y=ktar+ist+et+
put y-h=z;
then g=ax+ b2t test+ o
from which z may be expanded in ascending powers of z, thrt is of y— .

17—2



260 HIGHER ALGEBRA.

EXAMPLES. XXIL b

Expand the following expressions iu ascending powers of » ay far
3
as a’.

L i 5 18 5 lts
T 1—z-zt " 1—z—62% " S4x4at
d+z 1
4 . 5 1 dar—aat—z"
6. TFind a and b so that the 2 fermn in the expansion of %i%'%

may be (35— 2)am L
7. Tind @, 3, ¢ so that the coefficient of »* in the expansion of
a+br+cs?
O—af
8, If y?+%==(y+1), shew that one value of  is
%x—i—éxz—ﬂ;gaﬁ-]-......
9. If ex%+ av—y=0, shew that one value of ¥ is
y_ ot 3t l2dy
¢ of & al
Hence shew that r=-00999899 is an approximate solution of the
equation 2°+1007—-1=0. To bow many places of decimals is the
result correct ¥

10, In the ex ion of (1+o) (3 +az)(l+as) (1 +ais)...... , the
number of factors being infinite, and & < 1, shew that the coefficient of

may be n241.

T is _ 1 rir=1}
# - (1= (1-).....(1 —a") :
11. When a < 1, find the coefficient of #* in the expansion of
1
(I az) (L —a%) (1 —a'z)h.....te uf.”
12. If n is o positive integer, shew that
{1} ?l""'l—ﬂ,('il—l)"""l'l'?a—(j%g:]'-—)' (—2mtl—. ... =dnn1;
2 i
(2) mr—(ntl}n-1)"+ (i—g-)f fn-2m—-.....=1;

the zeries in each case being extended to » terms; and

3) - 1;2»4-'”-'-(1“’2 )1}3» e (= 1)
4 (ntpm—n ('-’H‘P‘“I)""'n_@g_l} {ntp—20—. ... =in;

the series in the laet two cases heing extended to n+1 terms.



CHAPTER XXIIT,
PARTIAL FRACTIONS.

315. In elementary Algebra, a group of fractions connected
by the signs of addition and subtraction is reduced to & more
simple form by being collected into one single fraction whose
denominator is the lowest common denominator of the given
fractions. But the converse process of separating a fraction into
a group of simpler, or pariial, fractions is often required. For

3 - b
l—dz+ 3z
ing powers of , we might use the method of Art. 314, Ex. 1, and
go obtain as many terms as we please. But if we wish to find the
general term of the series this method is inapplicable, and it is
simpler to express the given fraction in the equivalent form
1—15 i TE Each of the expressions (1 =)' and (1 - 3z)'
can now be expanded by the Binomial Theorem, and the general
term obtained.

example, if we wish to expand in a series of ascend-

318. In the present chapter we shall give some examples
lustrating the decomposition of s rational fraction into partial
fractions. For a fuller discussion of the subject the reader is
referred to Serret’s Cours d’Algébre Supéricure, or to treatises on
the Integral Caleulus, In these works it is proved that any
rational fraction may be resolved into a series of partial fractious;
and that to any linear factor x—a in the denominator there cor-

. . . A .
respends a partial fraction of the form ——; to any linear
T—a
factor x--b oceurring faice in the denominator there correspond

. . B
fwo partial fractions, -°7' and It x—b ocewrs three

B,
x—b (= by

times, there is an additional fraction —=' . aud so on. "o

(m_b)lja‘
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any quadratic factor ='+px+g there corresponds a partial

fraction of the form o f; ? ; ; if the factor &+ px + ¢ occurs
twice, there is a second partial fraction —+—Q‘-—o ; and so on.
(" -+ pa + )

Here the quantities 4, B, #, B,...... Pog P, Q are all
independent of w.

We shall make use of these resuits in the examples that
follow.

Ezample 1, Separate P Sz :1 & into partial fractions,
Since the denominator 23% + 2 - 6={2+2) (22— 3), we assume
Sz—11 A4 B

Tre—6 @42 -3’
where 4 and B are gquantities independent of z whose values have to be
determuined.
Clearing of fractions,
Sz-11=4 (2::: 3} + B {r+2).
Bince this equation is identically true, we may equate coefficients of like

powers of z; thus
24+B=3, -34+2RB=-11;
whenee A=83  B=-1.
bz-11 3 1

23 {r—( x+2 2%-3°

Ezample 2, Resohe ( —?M}T:Jr 3 into partial fractions,
L -+ 1 A ¥l
Assume [Py iy s R
mr+n=4{z+U+B(@-a).. .o 1)

‘We might now equate coefficients and find the values of 4 and B, but it
is gimpler to proceed in the follewing mauner.

Biree 4 and B are independsnt of =, we may give to z any value we please.
In 1}put z— a=90, or z=a; then

g TaFn
T asd?
mb—'n

rr+b

ometn ({uu-l_»__n, wmh—n
Y {z-a){z+1) a.+b $+b)

potling ¥+ b =0, orar= -0, =
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: 232 - 112 . .
Ezample 8. Resolve BT -7 into partial fractions,
Assume __M_ — A B [ s
5 (2:&—1)(3+z](3—xj"‘2m+ m‘*‘m ............ s

oL 2r -1l =d B4} B3+ B {22 -1} (3 -a2)+C 22~ 1) (3 + ).
By putting in succession 3w~ 1=0, 8+2=0, 8~ 2£=0, we find thai
4=1, B=4, C=_1
28z - 1137 1 4 1
T @) O-ah) -1 37m §l%

Bxtvz -2 . .
Ezample 4. Resolve Foar st into partial fractions.

A z2+ax-2 4 B G .
BRUME {x_g)ztlngj_1.~2x+x—2+(;2-j"3,

828 +x—2=A -2+ B (1-2x){z -+ (1 -2).

Let 1 -2z=0, then ,{.—__:."3.;
let @~ 2=40, then O=_4,

To find B, equate the cosflicients of 2?; thua

B=4 ~28; whenes B= -

L-CHE

. 4x-8 1 5 4
T -2z T8(1-22) 8(x-2) (z-2)*

42 - 19x

I =T into partial fractions,

Ezample 5. Resolva

42-19z _dz+B,

Assitme @File-4) P+l Tz 4
42— 19wa=(4z + B) (5— 4) + 0 (& +1).
Lot 2 =4, then 0= -2;

equating coefficients of «?, O0=4d+C, and 4=2;
equating the absolnte terms, 42= -~ 48+, and B= - 11,

_42-15x _2»-11 2
Wl e-4" 51T -t

317. The artifice employed in the following example will
sometimes be found useful.
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96 ~ a4 43z

Egomple. Resolve G ) into partial fractions.

—247*+ 48z 4 Jlx)

Assuene Gy i oo

where A i& some constant, and f(x) a function of x whose value remains to

be determined.
0 — 24r? 4 dr=A {z- 2P + [+ 1) F ().

Let z= ~1, then A= -1
Substituting for 4 and transposing,
{2+ 1) f (o) = (e — 24+ 9% - Bd® + dBle =t + 25+ 16ic + 165
L flel=2f+ 16,

To determine the partial fractions corresponding to - lﬁ , put 2 - 2=¢;

w416 (2420 +36 A+ 627 4127424

then o P = P
1.6 12 21
=: +z_'3+ FTA
1, 6 12 24
P I R Ry et
9::3—-2~i.r’+48.?:__ 1 _1___ § 12,
TP (zT) T2 -9 -9 Elo

318. In all the preceding examples the numerator has been
of lower dimensions than the denominator ; if this is not the case,
we divide the numerator by the denorninator until a remainder is
obtained which iz of lower dimensions than the denominator.

Example. Resolve Gi'%i-_—f into partial fractions.
By division,
(345227 Sr-4
oy s S AR T
ond 8e-4 5 1
o oy v RS
R et S SPUS
Eronr e SR iy Ry

318, We shall now explain how resolution into partial
fractions may De used to facilitate the expansion of a rational
fraction in ascending powers of w.
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S+ -2

 Example 1. Find the general term of - 2P 1= 0%)

when expanded in a
zeries of ascending powers of .

By Ex. 4, Axt. 316, we have

B2tz -2 —_ 1 5 4
- 2F (1-2r)  3(l-2x) B8(r—2) (x-2)d
1 5 4

T B R Yo R P

—-ga-arf (1-5)- (-9)”

Henee the generzl term of the expansion is
r 51 r+l
( “3te T T) =

T+

ey e in ascending powers of xand find

Ezample 2. Expand

the general term.
Tie A BauC,
l+m{l+z9 l+z 1+’
Trax=4(1+2)+(Bz+ ) (1 +2).
Let 1 +x =1, then 4=3;
equating the absolute terms, 7=A4+C, whence C=4;
equating the coefficients of 2%, 0=4+ B, whence B= -3,
Taox 3 i Gz
A58 G+e) " Txa T 1520
=5 (1+2)" 4+ ({4~ 32) (14271
=8f{l-z+a'-.... +{-rzr ..}
+(4-8m) (I-ztat— (-1
To find the coefficient of 27:

Assume

1

(1) If r is even, the coefficient of 2™ in the second serfes in 4 {-1)3;

therefore in the expansion the coefficient of 2™ is 3 +4 (- 1)%
=1
{2) If ris odd, the coefficient of =¥ in the second series is —3(-1}¥,
¥+1
and the required eoefficient iz 3(-1) ¥ ~8.

EXAMPLES, XXTIL

Resnlve inte partial fractions :

TEol 6413 g 1y
1 —&w+ 6z T8 -1l 15 © Ol 2uy (-



266 HIGHER ALGEBRA.
4 &= 102413 g 5 234 at—2—-3 )
(z~1)(#*—5x46) Cow{r—1)(22+3)
8 9 T zt= 3253247 +10
" D E RS VICEE T
g 26474208 g _22-llst5
ST T (e-8) (#7422 -5)
2a° - Bx?+10 52t + 645
10. (—-1¢ 1. (1) @+ 1P

" Find the general term of the following expressions when expanded

in ascending powers of .

143 13 5x+6 22T+ 3
12 [ iTzroes " Bt (-2 SR PR Ty
25 —4 4+3x+227
13. -z -2z 16. ({=a) (I+x-273"
3+ 2m—zt 44Tz
W arma—dme 18, @F3x) (1 +a)2"
%4 1 1—z+4 2z
B EnEry B ey
1 3—2a8
A ATt (o) B s et

23
1 x

Find the sum of » terms of the series

z*

O arm0ed T oD s TITH Qrad T

2(1—ax)

az {1 - ofx)

@) TT3 A Ten (579 T Trm (g am Tran

24 When & <1, find tha sum of the infinite series

T l-a - d-a" Q=B {T-a) " "

25. Sum to » terms the series whose p* term ix
ZP (L+aP*l)
=T (1 —em Ty (=P )’

26. Prove that the sum of the homogenesus products of # dimen-
sions which can be formed of the letters a, 4, ¢ and their powers is

an!-E(b__c) t£+3(6__a)+cn+2(a_b:}
TR+ R e-wy+l(a-1)




CHAPTER XXIV.
REcURRING SERIES.

320, A serles w 4w, +o bu +

in which from and after a certain term each term is equal to the
sum of a fixed number of the preceding terms multiplied respec-
tively by certain constants is called a recurring series.

321. In the series
1+ 8 + 32 + 42" + S +
each term after the second is equal to the sum of the two
preceding terms multiplied respectively by the constants 3z, and
—*; these guantities being called constants because they are
the same for all values of n. Thus
Gu' = 2. 42’ + (- 2") . 3
that is,
u, = Jou, — ', ;
and generally when « is greatér than 1, each term iz connected
with the two that immediately precede it by the equation

__ - 3
= Ao, —atu_,

or ' u,— e, +atu,_ =0,
In this equation the coefficients of w , % _ , and u,_, taken
with their proper signs, form what is called the scale of relation.

Thus the series

1+ 22+ 30 + do* + 5af+ L.
is a recurring series in which the scale of relation is
1-3z+a’

323, If the scale of relation of a recurring series is given,
any term can be found when a sufficient number of the preceding
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terms are known. As the method of procedure is the same
however many terms the scale of relation may consist of, the
following illustration will be sufficient.

It 1 —pax— g’ —
is the scale of relation of the series

a,+omtax + oz’ + ..
we have

N A—i 2 = S s=3
ext=pe.o, o vex’ o, X7 e ot

n—1
or an:.pa’«—l + qau-! + Ta’ﬂ—s;

thus any coefficient can be found when the coefficients of the
three preceding terms are known.

323, Conversely, if a sufficient number of the terms of a
series be given, the seale of relation may be found.

Example. Find the scale of relation of the recurring series
245z + 1867+ 3028 ...
Let the seale of relstion be 1 pz — ga®; then to obtain p and g we have
the equations 13- 5p-2¢=0, and 85— 13p - bg=0;
whenee p=5, and g= — 6, thus the scale of relation iy
1-5z+62%

324, If the scale of relation comsists of 3 terms it involves
92 constants, » and ¢; and we must have 2 equations to de-
termine p and ¢. To obtain the first of these we must know
at least 3 terms of the series, and to obtain the second we
must have one more term given. Thus to obtain a scale of
relation involving fwo constants we must have at least 4 terms
given.

If the scale of relation be 1—pw—gx®— 2’ to find the
3 constants we must have 3 equations. To obtain the first of
these we must know at least 4 tarms of the series, and to obtain
the other two we must have two more terms given; hence to find
a scale of relation involving 3 constents, at least 6 terms of the
serles must be given.

Generally, to find a scale of relation invelving m constants,
we must know at least Im consecutive terms.

Conversely, if 2m consecutive terms are given, we may assume
for the scale of relation

l-pa—pa—pa’— ... —p 0
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325. To find the sum of 1 terms of @ recwrring series.

The method of finding the sm is the same whatever be the
scale of relation ; for simplicity we shall suppose it to contain
only two constants.

Let the series he
£, K
yF @+ axi e E + (1

and let the sum be §; let the scale of relation be 1—px—qz;
so that for every value of n greater than 1, we have

w —ps,  —qa _ =0

Now S=a,+ ax+ ag’+..+ a_27,

nt—1

-pe 8= —pag—pax’—.. —pa, o '—pa o,

xn-H

— gt §= - g ..~ qu

=2

' —qa

=1
oo (L—pw— g’y § = o, + (0, —puy) =~ (pa,_, + ga,_) & —qa,_ 2",
for the coefficient of every other power of  is zero in consequence
of the relation
& P, g0, = 0.

_ + (al '—Pﬁo) z - (Pax—l + qam—e) z" + gan—la:NH
1 —pz—gx* 1 -pr—g¢gf ’

Thug the sum of & recurring servies is s fraction whose de-
nominator is the scale of relation.

526. If the second fraction in the result of the last article
decreases indefinitely as n increases indefinitely, the sum of an
4, + (at _ Pao) x
R

If we develop this fraction in ascending powers of & as
explained in Art. 314, we shall obtain as many terms of the
original series ag we pleage; for this reason the expression

@, + (aﬁ _Pa’u) x
1~ pz gt
is enlled the generating funciion of the series.

infinite number of terms raduces to

337, From the result of Art. 325, we obtain

a,+ (6, —po)a
o ---(----’-—-f--"z---- ma,tepran’+ . a2
1 — pm — g

LS
1

(pa,_, + g2, ,) %" + ga,_ 2"

- 1—px— gz’
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from which we see that although the generating function
@, + (@ —pa,) x

1 — pw — g2’
roay be used to obtain as many terms of the series as we please,
it can be regarded as the true equivalent of the infinite serieg

a,+ax+an .. ,
only if the remainder
(Pay, +95,.) & + g2, "

1 —pw— gz
vanishes when = is indefinitely increased; in other words only
when the series is convergent.

328. When the generating function can be expressed as a
group of partial fractions the general term of a recurring series
may be easily found. Thus, suppose the generating funetion
can be decomposed into the partial fractions

4 N B . ()
I—gx 1+dx  (l—cx)®’
Then the general term is
{4a" + (1Y By + (r+ 1) ¢} 2.

In this case the sum of 2 terms may be found without using
the method of Art, 325.

Ezample. Find the generating function, the general term, and the sum
to n terma of the recurring series

l1-Ta-a"- 4828~ ...
Liet the seale of relation be 1 —pz — gz?; then
~1+Tp—g=0, —48+p+Tg=0;
whence p=1, g=0; and the scale of relation is
1-xz—6zt
Let S denote the sum of the series; then
S=1-Te- 24325 ...

—z8= - 2+Te+ 24
- 6278 = -Gt 42
{t —x-6x*) §=1-Bz,
1-82
S=l—x—6a:‘:"

which is the generating fanction.
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If we separate ii—;g:-—xg into pariial fractiona, we obtain '1"4"-2_‘_3';- - I:]:Ta; .
whence the (r+ 1)*" or general term is
(-1 2 - ry o,
FPuiting r=0,1,2, . .n-1,
the sum to n terms
={2- 22+ — L+ (1) 20T (14 824 8%0 14 371
24 (-1mmigmtlgn 1 _3ngn

1+% 1-8r -

329. To find the general term and sum of = terms of the
recurring series @, +a, +a,+ ..., we have only to find the
general term and sum of the series ¢ +ax+ [ , and put
=1 in the results, :

FExemple. Find the genersl term and sum of n terms of the zeries

1+64+24 4844 ., .

The scale of relation of the series 14 6+ 2403 L84 + ... g 1~ 3z +0a,
1tz

ing fanetion ig ——————.
and the generating fanection is [Erres

bl
This expression ig equivalent to the pertisl fractions

4 3
1-32 1-2z°
If these expressions be expanded in ascending powers of x the general
term is (4.37-3. 8",
Henece the geversl term of the given series i 4. 373, 2*; and the sam
of # terms is 2Er-1)-8(gn-1).

330, We may remind the student that in the preceding
article the generating function cannot e taken as the sum of
the series

1+6z+ 242"+ 84af + ...

except when x has such a value as $0 make the series convergent,
Hence when @w=1 (in which case the series is obviously divergent)
the generating function is not a true equivalent of the series
But the general term of

1+6+24+84+ ...
is independent of x, and whatever value x may hove it will always
be the coeficient of «” in
1 +6z+ 24+ 84+ ... ...,

We therefore treat this as a convergent series and find its
general term in the usuwal way, and then put ¢ =1.
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EXAMPLES, XXIV.

Find the generating function and the general termy of the following
geries:

1., 1482+9224+132%+....... AR PO RN 3 R
8. 2+3r+bf+8%+.. ... 4 T-0r4+8ri427at+.. ...
5, 34+Br+1d4at+3627 40801276254,

Find the »® term and the sum to » terms of the following series:
6. 24D5+13435+....... 7. ~1+6224+304%+ ...
8 24+Tz+E5x7491a% 4+ ..

9. 1+ 224627+ 202%+ 6644 +-21225 4. .

10 ~2240+8+.. ..

11. Shew that the series
19422432442+ +nd
PB4 34434+ -
are Tecurring series, and find their scales of relation.

12. Shew how to deduce the sum of the first % terms of the re-
eurring series
g+ O B+ Gga® ot
from the sum to infinity.
13. Tind the sum of 2n-+1 terins of the series
3-1+4+13-9441-53+.......
14. The seales of the recurring series
gt T aprt 4 et ,
bytbre bt +hoad L )

are 1+pr+ged, 14 rw+er?, respectively; shew that the series whose
general term is (g, +2,) 2" is & recurring series whose scale is

L+ (ptr)z+(g+s+4pr) o+ (gr+ps) 22+ gt

15. If a series be formed having for its n* term the sum of n terms
of a given recurring series, shew that it will also form a recurring
series whose scale of relation will consist of one more terin than that
of the given series,



CHAPTER XXV.

CONTINUED FRACTIONS.

331. An expression of the form «+ 18 called a
: e+ ...

continued fraction; here the letters a, 5, c,...... may denote any

quantities whatever, but for the present we shall only consider

the simpler form a + , where &, ¢, a_,. . arve positive

a+1
R

3
integers. This will be usnally written in the more compact form
1 1

a, + a,+

@ +

332, When the number of quotients o, a,, a_,... is finite the
continued fraction is sald to be ferminafing ; i the number of
quotients is unlimited the fraction is called an infinite continued

Jraction.

1t is possible to reduce every terminating continued fraction.
to an ordinary fraction by simplifying the fractions in succession
beginning from the lowest.

333. To convert n given Jraction wito o continued fraction.

Tet = be the given fraction; divide m by n, let « be the
”

quotient and p the remainder ; thus

m

_=a]+£:a1+_;

i) e T
p

H.E A i8
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divide 7 by p, let g, be the quotient and ¢ the rewainder ; thus

E'=a,,+g-7—-(.s_ +}-;
p T p 7P
q

divide p by ¢, let @, be the quotient and » the remainder; and so
on. Thus :

" -1 1 1
—~ =g, + =, +
7 1 @, + &, +
@, + —— *
o+
If 7n s less than », the first quotient is zoro, and we put
m 1

H ko
"

and proceed as before.

Tt will be observed that the above process is the same as that
of Ainding the greatest common measure of m and % ; hence if m
and n are comniensuradble we shall at Jength arrive at a stage
where the division is exact and the process terminates. Thus
every fraction whose numerator and denominator are positive
integers can be converted into a terminating continued fraction.

Ezampile. Reduce —g%; to & continved fraction.

Finding the greatest common measure of 251 and 802 by the usual
Yrocess, we have

51251 1802]3
6 G 49| 8
i

and the successive guotients are 3, 5, 8, 6; hence
251 1 1 1

802 = 3% 5+ 8%

[=-1 38 S

434, The fractions obtained by stopping at the first, second,
third,...... quotients of a continued fraction are called the first,
second, thivd,...... convergents, because, as will be shewn in
Art. 339, each successive convergent is a nearer approximation
to the true value of the continued fraction than any of the
preceding convergents.
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335. To shew that the convergents are altermately less and

greater than the continued fraction,
Let the continued fraction be a, + 11
@+ a,+

The first convergent is a,, and is too small because the part

1 1 . . . .
f;:: @ ... is omitéted. The second convergent is «, +a, and is
too great, because the denominator @, is too small. The third

: 11 .
convergent is o, + T w and is too small hecause .s.'.,+l is too
3 k4 B q3
great ; and so on.
When the given fraction is a proper fraction «, = U ; if in this
case we agree to consider zero as the first convergent, we may
enunciate the above results as follows :

The convergents of an odd orders are all less, and the convergents
of an even order are ol greater, than the continued fraction.

336. To establish the low of formation of the successive eon-
pETGENTS.

Let the continued fraction be denoted by

then the first three convergents are
e e+l alsa+l)+a
1’ & @ . e+l

and we see that the numerator of the third convergent may be
formed by multiplying the numerator of the second convergent
by the third quotient, and adding the numerator of the first con-
vergent ; also that the denominator may be formed in a similar
manner.

Suppose that the successive convergents are formed, in a
similar way ; let the numeratars be denoted by p,, p,, ,,..., and
the denominators by ¢, ¢,, g,....

Assume that the law of formation Liolds for the #™ convergent;
that is, suppose

Poma P TP 704, T -
18—2
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The {n+ 1)* convergent differs from the »* only in having

the quotient @, + in the place of «,; hence the {n + 1)* con-

s
(o

_ a‘u+1 f) +P1: 1 'b 21
= pposition,
n+1 g‘! + g =1 y

1f therefore we put

Paei = Gy Pt Py Car1 =Gt sy
we see that the numerator and denominator of the (n + 1)® con-
vergent follow the law which was supposed to hold in the case of
the n't. But the law does hold in the case of the third con-
vergent, hence it holds for the fourth, and so on; therefore it
holds umversally

H+l

vergent

)P“'1+p RN (Y N L
) q gy (B Gy ) +9',.—J
- l

337. Tt will be convenient to call @, the ntt part@.aﬂ quotient;
the complete quotient at this stage being a, + L

I+I + aﬂ+9+

Wae shall usually denote the complete quotient at any stage by k.
We have seen that
& &, pn—l +p —t
q'l a gl'— + gx—!
let the continued fraction be denoted by «; then z differs from
L only in taking the complete quotient % instead of the partial
q:mtient @, ; thus
P H P
]c g"—l + ga—ﬂ

338, If Ba g the ntn convergent to a continued fraction, then -

[

PaGoot —Pa Q= (- 1)
Let the continued fraction he denoted by
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then

Pyt =My G ™ (aﬂpn—l + Pl N, (“’uqu—1 + qu—g)
= (_ ]) (p,.—l Gumz = Poy g,.-])
=(-1¥(p, 2 Gu-a— P,y 9,0} similarly,
= (_ 1)n—2 (?s M gg)‘
But ngt_plgg=(a1ag+1)_al'aa:l:('l)zi
hence PuGar—Perda={— 1)

‘When the continued fraction is less than unity, this result will
still hold if we suppose that «, = 0, and that the first convergent
is zero.

Nore, When we are calenlating the numerical value of the suceessive
convergents, the above theorem furnishes an easy test of the accuracy of the
work.

Cor. 1. Each convergent is in. its lowest terms ; for if p, and
g, had 2 coxamon diviser it would divide g, ¢,_,~p, , 9., or unity;
which is impossible,

Cor. 2. The difference between two successive convergents is
a fraction whose numerator ig unity ; for

& — ?_w:l = ,pu g,.—: ”Pu—l&‘ - d__}

A A Guus Guuca

EXAMPLES. XXV, a

Calculate the successive convergents to
1 1 1 11

L 2 17 iF iy &

g L 1 1 1 1 11

24 24 3+ I+ 44 24 67
1 1 1 1 1

3. 3+ — = — L

57 1T 2+ 2+ 14 §°

Expreas the following quantities as continued fractions and find the
fourth convergent to each. ]
179 159 3927 2318
8 3% 9. 1139, 10, '3029. 11 4316
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12, A metre i3 39-37079 inches, shew by the theory of continmed
fractions that 32 metres is nearly equal to 35 yarda.

13. TFind a series of fractions converging to ‘242326, the excess in
days of the true tropical year over 365 days.

14. A kilometre is very nearly equal to -62138 miles; shew that

. 5 18 23 64

the fractions 3 33' 37° 08
ratio of a kilometre to a mile,

15. Two scales of equal length are divided into 162 and 209 equal

parts respectively; if their zero points be coincident shew that the
31* diviston of one nearly coincides with the 40" division of the other.

are successive approximations to the

18. If i 4-n?-1 is converted int tinued fracti h
. . 0 o a continued fraction, shew

that the quotients are n ~1 and =41 alternately, and find the suc-
cesgive convergents.

17. Shew that

Pav1=Pn-1_Pn
1y dmEl a1 e
( ) Tne1~ Gny gn’

@ (Freon) (-2t s (o) (1 2em).
P’l Pl’l+1 gn gn-l-l

18, If £7 i the uon convergent to a continued fraction, and a, the
correﬂpondiné quotient, shew that

Prten—a~ Pn-2@nt2=%ns g Sy - O+, 0+ a,.

339, FRach convergens is mearer lo the continued fraction than
any of the preceding convergents.

Let x denote the continued fraetion, and ‘?-‘5, 2"—*—‘, Drss
QH gn-H gu+s

three consecutive convergents; then o differs from £1t2 only in

taking the eomplele (1 + 2)™ quotient in the place of « "

this by %; thus 2= @,ﬂ—-—-—m}
y ’ kq:ﬂ-l +gu

Pa B (P 0.80) _ k

oAt

9 kg, +e) gk, +a)

denote

nte?

and Part P ®e e L
gl+] Qn-{-l (@!I*—l + ?n) qu-j-1 (kg,.-i-[ + 9'.,)
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Now % is greater than unity, and ¢ is less than ¢, ,,; hence on
both accounts the difference between Zurt and = is less than the

W+l
) P . )
difference between £¥ and o that is, every convergent is neaver
B,
to the continued fraction than the next preceding convergent,
and therefore @ fortdord than any preceding convergent.

Combining the result of this article with that of Art. 333, it
follows that

the eonvergenis of an odd order continually ticrease, but are
abways less thar the continued fraction ;

the convergenis of an even order continually decrease, but are
always greater than the continued fraciion,

340.  7Tb find limits to the error madetn taking any convergent
Jor the continued fraction,

Leat ?-?-'!, "—Uif—', ;;—“—* be three consecutive convergents, and let
H, atl nt
% denote the complete {n + 2)* quotient;

= kprd-] _t?u
gu ¥ 0,
g T T
Ll " : nt qal "
T g (g )
Now k is greater than 1, therefove the difference between a and
Pr is less thax _L , and greater than L
' o Tus (G T 0

then

* + * M 4 L] ’
Again, since ¢,,, > g,, the evror in taking P instead of @ is

1
less than -—, and greater than z——

n L

341. From the last articls it appears that the error in

. . . . 1
taking T instead of the continued fraction is less than —- - |

" alatl

. 1
OF ——em - that is, less than ————; hence the larger
(Iu (a'u+1 (174 + qgu-—l) a’n—]?u
- 7 . . .
e, is, the nearer does 2 approximate to the eoutinued fraction;
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therefore, any convergent which immediately precedes o lorge
quotient i3 « near approwimation to the continued fraction.

. 1 ., .
Again, since the error is less than —;, it follows that in order
to find a convergent which will differ from the continued fraction

. Lo ]
by less than a given quantity = we have only to calculate the

suceessive convergents up to v y where ¢ * is greater than a.

342. The properties of continued fractions enable us to find
two small integers whose ratio closely approximates to that of
two incommensurable quantitics, or to that of two quantities
whose exact ratio can only be expressed by large integers.

Erample. Find a series of fractions approzimating to 8:14159.

In the process of finding the greatest common measure of 14159 and
100000, the successive quotients are 7, 15, 1, 25,1, 7, 4. Thus

= 1 1 1 1 1 11
3-14199:3-&-%—; 5% i 955 1F 7 4°
The enccessive convergents are
3 0m g3 5
1° 7' 106" 113* i
this last convergeni which precedes the large guotient 26 is a very near
approximat{on, the error being 1es‘s then 25——)(;’1—1—3-—9, and therefore less than -

)

1
3> (100’ ar ~(00004,

343.  Any convergent 13 nearer to the comiinued, fraction tham
any other jfraction whose demominator 18 less than that of the
convergent.

Let = be the continned fraction, z)—“, Pazt two consecutive

L] u—l

r . . .
convergents, S fraction whose denominator 8 is less than ¢ .

If possible, et 1; e nearer to = than 2», then - must boe
2

Pt

=]

n

nearer to = than

rF

=t it follows that T st lie hetween 2= and 7oy
5

w1 Qn

[Axt. 338]; and since @ lies hetween Pe and

u

L hud?
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Hence
P < Lo Pazy

Toer 9n Gumi

7 .
- , that Is = -
s

L n—1
. 8
C TP~ D,

that is, an integer less than a fraction; which iz impessible

. . 7
Therefore Zx must be nearer to the continued fraction than 3

u

’

34 IF g, % be two consecutive convergents to o continued

Sraction x, then % is greater or less than Xx°, according «s E ig

x

greater or less than B,

Let k& be the complete quotient corresponding to the con-
e

. . . Ep'p
rergent, immediately succeedin }—J,; then x=—-—",
verg o 8 q g+ q

@J_mﬂ= 1 !k'-i- a_ !k_)r+)!
s q—--umq,(@,_l_q)i{pp (kg +q)° - qg’ (kp" + P}
& —pg) (pr —v'0)
97 (k' +9)°
The factor &'y’ — pq is positive, sinee p' > p, ¢'>¢, and k> 1;

p

hence o > or <" according as pg’—p'g is positive or negative ;

that is, according as g > or < %

Cor. Tt follows from the above investigation that the ex-
pressions pg’ — p'g, pp —gg'a’, p* - ¢*", ¢"=’ —p° have the same
sigm. :

FXAMPLES. XXV. b

. : .o 223 :
1, ¥ind limits to the error in taking o3 yards ag equivalent to

2 metre, given that o metre is equal to 1:0836 yards.
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2. TFind an approxima’t.ion to
11 1 1
U5y 55 TE 6 T

which differs from the true value by less than -0001.
3.. Shew by the theory of continued fractions that :':% differs from
1 Ju—
17830

M%QM-- as a continned fraction, and
A6+ 1402+ 157 racwon, an
find the third convergent.

1-41421 by a quantity less than

4, Ezpress

5. Bhew that the difference between the first and 2% convergents
is numerically equal to
1 1 1 ( (-1

@F 00 9% gn—l‘fn
6. Shew that if «, iz the quot1en’c. corresponding to Z; 2

1 1
ay Py LU S S .1_,
Pr1 O+ au~s+ a‘n-s+ a’3+ 3+ &y
(®) L S 1 1 L Ly
Tn-1 Bpmy T Gn-at Sngt - 2t @y

7. In the continued fraction 1111

at+ a+ at a+
{1} ]J‘2+]32,.+1=}3,._1}Jn+1+p,|p,‘+3,

...... , shew that

@) Pa=¢a-1-
8 If E::‘ is the n'™ convergent to the continned fraction
L 11111
g+ b+ e+ b+ at b+
shew that Foe =P s 1 3,‘_1=%p._,".

9. In the continued fraction
111 1
g4 b+ a4+ by U7
shew that
Pr+a- (ff3‘+2)?’n+}’u—2=0: Fn+z—lab+2) ¢t Gn_o=0.
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10. Shew that

1 1 1 )
¢ (xl-‘_c_z?;;-{: B amd to 20 quotlents)
1 1 1
=as + T e .o 2n quotients.

Lot @y b Tt
n. If %: Ié ’ % are f‘h_e ik (n—13" (7 — 23" convergents to the
continued fractions
1 1 1 1 1 1 1 1 1
o Gt BTt mt aF Gf aF ar
respectively, shew that
M=, '+ R, N=(a@,+1)P+aR

==

12, If £2 iy the convergent to

L3
11
at a+ a+
shew that p, aud g, are respectively the coefficients of #» in the
expansions of

x d uz+z°
T—ar-at 0 T—am—at'
an_lsn
Hence shew that p,=¢,_ = vy where a, 8 are the roots of the

equation £ —at—1=0.

13, If jg’ * i the »™ convergent to

1 1 1 1
a+ B+ a+ b+ 7
shew that p, and g, are respectively the coefficients of »* in the
expansions of
r+bpt-at and FE {ab+ 128 — ot
1~ {ab+ 2}t 42t 1—(ab+2)at+ a2t
Hence slhiew that
Kl S
_'8 }
n+l ﬁn+_1 (a.“ B‘lj
-8
where a, 8 are the values of a2 found from the equation
— (eeh 4+ 8)aR + 2t =0

Wigy = g,y =ah

,p”u+1 - g*u



CHAPTER XXVL
INDETERMINATE EQUATIONS OF THE FXRST DEGREE.

345. In Chap. X. we have shewn how to obtain the positive
integral solutions of indeterminate eguations with numerical co-
efficients; we shall now apply the properties of continued fractions
to obtain the general solution of any indeterminate equation of
the first degree.

346.  Any equation of the first degree involving two un-
knowns @ and g can be reduced to the form ax+by== ¢, where
@, b, ¢ are positive integers. This equation admits of an unlimited
number of solutions; but if the conditions of the problem require
@ and y to be positive integers, the number of solutions may be
limited.

It is clear that the equation ax+by=—¢ has no positive
integral solution ; and that: the equation ax — by = — ¢ is equivalent
to by — az = ¢; hence it will be sufficient to consider the equations
axby=oc.

If @ and b have a factor m which does not divide ¢, neither of
the equations ez by =¢ can be sabisfied by integral values of =
and y; for ax= by iz divisible by m, whereas ¢ is not. '

If a, 8, ¢ have a common factor it can be removed by division;
so that we shall suppose a, b, ¢ to have no common factor, and
that a and b are prime to each other.

347. . To find the general solution in positive integers of the
equation ax — by =o¢.
o
b
the convergent just preceding ;—6 i thenag—dp==1. [Art. 338

Let - be converted into a continued fraction, and let 2 denote
q
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I. If ag—dp =1, the given equation may be written
azx - by = ¢ {ag — bp); .'
a{z—cq)=b{y-cp).

Now since @ and b have no common factor, x—cq wust be
divisible by &; hence » — cq=2¢, where ¢ is an integer,

L Emeg L _y—ap,
o b T e

that is,’ w=bit+eq, y=al+cp;

from which positive integral soluticons may be obtained by giving
to ¢ any positive integral vaiue, or any negative integral value
numerically smaller than the less of the two quantities %ﬁ?’ 2

&

also £ may be zero; thus the number of solutions is unlimited.
II. If ug~&p=—1, we have
ax—by=-—o(ag—bp);
a(@+eg)=b(y+ep);

Tog  y+ep
T e

b
hence 2=bl—cq, y=at-cp;

=1{, an integer;

from which positive integral solytions may be obtained by giving
o ¢ any positive integral value which exceeds the greater of the
%, @ ; thus the number of solutions is unlimited,

two guantities -

131, If either @ or 4 is unity, the fraction 2 cannot be con-

&
verted into a continued fraction with unit numerators, and the
investigation fails. In these cases, however, the solubions may be
written down by inspection ; thus if =1, the equation becomes
ax—y=¢c; whence y=ax— ¢, and the solutions may be found by

o s - ¢
aseribing to @ any positive integral value greater than ~.
- 3

Nore. 1t should be observed that the series of values for z and y form
two arithmetical progressions in which the common differences are b and a
respectively,
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Ezample. Find the general solntion in positive integers of 29x - 42y =5,
41 42
Ian converting 3 into a, continued fraction the convergent just before 35

- 13

is ; we have therefore

-9')
2913 -42x9=-1;
o 29x 65 -42%4a=- 5;

comhining this with the giver equation, we obtaln
29 (z+65) =42 (y +45) ;

o 5+05 _y+45 . .
. -—-42—_2—9—t, an integer;

hence the general solution is
=42 - 65, y= 208 - 45,

348.  Gliven one solution in positive infegers of the equation
ax - by = ¢, 2o find the general solution.
Let &, & be a solution of ax—dy=c; then ah—bk—c.
ax — by =ah - bk ;
o a(e-hy=b(y-k);

s—h y-k .
= -7 =4t an integer ;

b
o m=ht bl y=k+at;

which is the general solution.

348, T find the general salution in positive integers of the

equation ax+by=oc
Letg be converted into a continued fraction, and letg be the

convergent just preceding %5 then ag —bp== 1.

I Ifag—byp=1, we have
az+ by =e¢(ag—bp);
aleg—z)=b(y+op);

x  y+cp® .
= =——=-={ an integer;

b
w=cq —bt, y=al-cp.
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from which positive integral solutions may be obtained by giving

to ¢ positive integral values greater than % and less than % .
&

Thus the number of solutions is limited, and if there is no integer

fulfilling these conditions there is no solution.

IT. Ifag—bp=—1, we have
am + by =— ¢ (ag — bp);
ale+eg)=b(p-y);

x+o - -
__b__q = Epa L ¢, an nteger,

w=>bt—cq, y=cp—at;
from which positive integral sclutions may be obtained by giving
to ¢ positive integral values greater than % and less than c_g.
As hefore, the nummber of solutions is limited, and there may he
no sclution.

II1. If either @ or b is equal to unity, the solution may he
found by inspection as in Art, 347,

350,  GHwen ome solution in positive dnteyers of the equation
ax + by = ¢, to find the general solution. :
Let %, & Le a solution of ax+ by = ¢; then ah+ bk=e,
ax + by =ah + bk ;
a(e—h)y=b{k-y},;

z-h k-yg .
5 = — = §, an mteger;

w=h4bt, y=k—at;

which is the general solution.

351, T'o findd the number of solutions tn positive integers of the
equation ax+by=c

Let ; he converted into a continved fraction, and let ¥ 6 the
}

convergent just preceding = ; then g —dp==1.
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1. Yebag—bp=1; then the general solution is
- m=cg—bl, y=al—cp. . [Art. 349.]
Positive integral solutions will be obtained by giving to ¢

@
positive integral values not greater than g , and not less

than L.
o

(i} Suppose that % and % are 1ot integers.

DLy Ao
Let a-—m-r‘f,' =Y,

where m, 5 are positive integers and f, g proper fractions; then
the least valus ¢ ean have is m+ 1, and the greatest value is n;
therefore the number of solutions is

_ _Q_EE - :i.l. —
n—m=- a-a-jg ab"f &

4

Now this is an integer, and may be written e fraction, or

A fraction, according as fis greater or less than g. Thus the

ab

. ¢ e
pumber of solutions is the Integer nearest to —, grester or less

according as f or g is the greater.
(ii) Suppose that g is an integer,

In this case g = 0, and one value of & is zero. If we include
¢
ab
teger. Hence the number of solutions is the greatest integer in

this, the number of solutions is —+ /4 which must be an in-

e e ) . .
— +1 or ' according as we include or exclude the zero solution.

ab
(iliy Suppose thak (E; 1s an integer.

In this case /=0, and one value of ¥ is zero. If we include
this, the least value of ¢ Is m and the greatest is n; hence

the number of solutions is w—m+1, or na —g+ 1. Thus the

ab
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number of sclutions is the greatest integer in Zilor 2, ae
- a

b ab’
cording as we include or exclude the zero solution.

{iv) Suppose that E and% are both integers.

In this case /=0 and g=0, and both @ and y have a zero
value. If we include these, the least value ¢ can have is m, and
the greatest is n; hence the number of scluticus ism—m + 1, or

£ 1. If we exclude the zero values the number of solutions is

ab

L1

ab

I If ag—dp= —1, the general solution is
w=b —eoq, y=cp—at,
and similar results will be obtained

353. To find the solutions in positive integers of the equa-
tion ax + by + cz=d, we may proceed as follows.

By transposition ax + by =d —¢z; from which by giving to 2
in succession the values 0, 1, 3, 3,...... we obtain equations of
the form ax + &y =¢’, which may be solved as already explained.

353. If we have two simultaneous equations
ar+by+cz=d, au+by+dz=d,
by eliminating one of the unknowns, z say, we obtain an equation

of the form 4w+ By=C. Suppose that @ =/#, y=g¢ is a solution,
then the general solution can be written

z=F+ By, y=g—ds
where # is an integer,
Substituting these values of 2 and y in either of the given

equations, we obtain an equation of the form Fs+Gz=H, of
which the general solution is

s=h+ Gt z=k- It say.
Substituting for s, we obtain
w=F+Bh+ B, y=g—Ah - AGL;
and the values of &, y, » arc obtained by giving to ¢ suitable
integial values.
H. H. A 19
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354. Tf one solution in positive integers of the equations
o+ by +ox=d, dx+by+ee=d,
can be found, the general solution may be obtained as follows,

Let £, g, » be the particular solution ; then
af +bg+ch=d, af+bg+ch=d.
By subtraction,
a@—Fi+b{y—g) +ecle—k)=0,
o (e =Y+ (y—gy+c(z2-A)=0;
whense
x—-f  y-g _ z—h ¢
be' - bc ¢ad—ce ab—ab Kk
where ¢ is an integer and % is the H.c.: of the denominators
Lo’ —b'c, e’ — ¢, @b’ —’b.  Thus the general solution is

af e (b —U0) L, y g+ (o 00 5 a=hr (b -0 1.

EXAMPLES. XXVI

Find the general solution and the lesst positive integral solution of
1L sz—Tlly=1, 2 455z—519y=1. 3. 4367 - 303y=>5.

4. In how many ways can £1. 19s. 6d. be paid in florins and half.
crowna ?

5. TFind the number of solutions in positive integers of
1lz415y=1031.

6. TFind two fractions having 7 and 8 for their denominators, and
such that their sum is 1}%.

7. Find two proper fractions in their lowest terms having 12

and 8 for their denominators and such that their difference is 2—14 .

8, A certain sum consists of & pounds y shillings, and it is half
of ¥ pounds » shillings; find the surn,

Bolve in positive integers:

9. 6Grt+Ty+4e=122 10, 12z 11y 4:=22
1l + 8y —6z=145 " —4dr+ Sy-+ z=17}'
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11. 20x—21y=38} 12, 137+ 112=103
2y + de=34f" 72— By= 4f°
13, Tx+dy+19:=84, 14 232417y +112=130,

15. Find the general form of all positive integers which divided
by 5, 7, 8 leave remainders 3, 2, 5 respectively.

18. Find the two smallest integers which divided by 3, 7, 11 leave
remainders 1, 6, 5 respectively.

17. A number of three digits in the septenary scale is represented
in the nonary scale by the same three digits in reverse order; if the
middle digit in each case iz zero, find the value of the number in the
denary scale.,

18. If the integers 6, @, & are in harmonic progression, find all the
possible values of o and &.

19. Two roda of equal length are divided into 250 and 243 egual
parts respectively ; if their ends be coincident, find the divisions which
are the nearest together.

20. 'Three bells commenced to $oll at the same time, and tolled at
intervals of 23, 29, 34 seconds respectively. The second and third
bells tolled 39 and 40 seconds respectively longer than the first; how
many times did each bell toll if they all ceased in less than 20 minutes?

-2L. Find the preatest value of ¢ in order that the equation
7249y =c may have exactly six solutions in positive integers.

22, Find the greatest value of ¢ in order that the equation
14z + lly=c may have exactly five solutions in positive integers.

23, Find the limits within which ¢ must lie in order that the
equa.iggill 19x+14y=c¢ may have six solutions, zerc solutions being
exclnded.

24, Shew that the greatest value of ¢ in order that the equation
ar+by=¢ may have exnctly = solutions in positive integers is
(n+1)ab—a—b, and that the least value of ¢ I8 (n—1)ab+a+ b, zero
solutions being excluded.

192



CHAPTER XXVIL
RECURRING CONTYINUED FRACTIONS.

355. 'We have seen in Chap. XXV. that a ferminating coxn-
tinued fraction with rational quotients can be reduced to an
ordinary fraction with integral numerator and denominator, and
therefore cannot be equal to a surd; but we shall prove that a
quadratic surd ean be expressed as an infinite continued fraction
whose quotients recur. We shall first consider a numerics]
example.

Exzample. Express ./19 as a continued fraction, and find a series of
fractions approximating to ita value.

NiG=44 (W19 -4 =44

3 +
ST
J044 , 18-85

3 ER N Ty
J1942_ J19-8 9
=1

RN TFEE

J1943_, J10-3 . 5
g ot g = gl
n9+3 . J19-2 3
NIV T VAV T A e .
5o T =
J19+2 194 1
R VL
J10F4=8 (1 —4) =Bt

after this the quotients 2, 1, 3, 1, 2, 8 recur; hence

11 1 1 1 1
Oty Tr s Ir oy By

It will be noeiiced that the guotients recur s soon as we come to a
guotient which is double of the firet. In Art. 361 we shall prove that this is
slways the case.
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[Ezplanation. In each of the lines above we perform the same series of
operations. Xor exsmple, consider the second line: we first find the

4
"”1‘2* */19:9'*'4_2, that

We then maultiply numerator and denomipator by the surd

greatest integer in ; this is 2, and the remainder is

J18-2
-

conjogate to o /19~ 2, so that after inverting the result

is
5 .
JI0§e’ we begin a
new line with & rationzl depominator.]
The first seven convergents formed a3 explained in Art. 336 are

4 9 13 48 61 170 1421
12" 3°*' 11" 14' 3% ' 326 °

The error in taking the last of these is less than {-5-21—6-—”, avd is therefore
. i 1 .
less than ﬁﬁa)-g o T5I00° and a fortiori less than -0000I. Thus the

seventh convergent gives the value to at least four places of decimals,

356,  Buvery periodic continued fraction is equal to one of the
roots of @ quadratic equation of which the coefficients ars rational,

Let o denote the continued fraction, and y the periodic part,
and suppose that

BRI 1 11

SR AP h+ k+ oy’

1 11

and Y+ —— . 2
7+ U+ v+ y

where a, b, ¢,...h, & m, u,...u, v are positive integers.

i

Let ;—), g-, be the convergents to x corresponding to the

quotients %, & respectively; then since ¥ is the complete quotient,

Py+p. whence # = p’—qx

y+aq’ T—7
qYy+q gr—3

we have x=

Let E, r—, be the convergents to y corresponding to the
g

tient tively ; +l Ak
y H Y=——"-.
guotients =, v respectively; then Syt

Substituting for y in terms of @ and simplifying we obtain a
quadratic of which the coefficients are rational.
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The equation &'4y° +{s—r)y~r=1, which gives the value of
#, has its roots real and of oppoesite signs; if the positive value of

¥ be substituted in m:P—‘z-:—E , on rationalising the denominator

7y

the value of « is of the form 4 +(;',‘/i§, where A, B, (! are integers,

B being positive since the value of ¥ is real.

. i1 1 1
Fxzgmple, Express l+~2—+ 3T 4T 5o

Let 2 be the value of the continued fraction; then z -1=

... 8§ a surd.

LS S
2+ 3+{(z-1)°
whenee 228 +22-7=0: .

The econtinned fmctign ig equal to the positive root of this equation, and

is therefore equal to 1‘;_ .
EXAMPLES. XXVIL a.

Ezxpress the following surds as continued fractions, and find the
aixth convergent fu each:

1 J3 2, Jb 3. /s 4. ./
5. /1L 6. 13 7. Jl4. 8 22
9. 2./3 10. 4.2 11. 3./5. 12, 4./10.
1 1 8 7.
13, ;—/é—l . 14, :/33 \ 15. \/ 5 i8. e

o,
17. Find limits of the error when %ﬁg is taken for J/17.

916 .
o1 taken for »/23.

19. Find the firat convergent to ,/101 that is correct to five places
of decimals.

18. Tind limits of the error when

20, Find the first convergent to /15 thad is correct to five places
of decimals.

Ezpress aa a continued fraction the positive root of each of the
following equations:

21, #42x-1=0. 22, »t—4p--3=0. 23. TF2-8r—3=0.
24, Express each root of #2-52+3=0 as a continued fraction.

RN
6+6+ 6+

. 1 1 1 1
26. TFind the value of a7 iy 5%

25, Find the value of 34+
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97. Find the valueof 34— ... L 1 1 1
tTE YR iy ot 34
1 1 1 1
Find th meof 5+ - 2.~ - _
28, in e value I+ T iz Togm

29, Shew that

1 1 1 1 I 1 1 1
e =3l =
+1+6-{-1—1~6-§- '3( +3+2+3+2+ """ )
30. Tind the difference between the infinite continued fractions
1 1 1 1 1 1 1 _L i1 1 1

14+ 84+ 56+ 14+ 8+ 5477 2% 1% 6+ 3+ I+ 53

¥357.  To convert a quadratic surd into a continued fraction,

Tet ¥ be a positive integer which is not an exact square,
and let ‘e, be the greatest 1nteger contained in /& ; then

SV =+ (¥ —a)= »,/N ,if'rt=N-(al"'.

Let &, be the greatest integer contained in N/i;.'_? '; then

'\/N+a1=bl+'\/N_blr1+a’l=bl l/—ﬁi:-f?zbl s ,
1 1 T \/N + &y
where a=br —a andr r,=N-qa’
Similarly
; -_—
Nk a*=bg+ NN —a, -5+ o
#, 7 J +a,
where a,=br,—d, and rg =N —qf;
and so on; and generally
"/N + a"-:_l — \/‘?V - a-" = ru .
*. - bu-l ;;:T— - bu—l +W:__a 2
where a=b, o —oe,_ andr,_r=N—al

1 1 1 1 _
byow b+ b+ b+ ’

and thus /& ean be expressed as an infinite continued fraction.

Hence SN =a +

We shall presently prove that this fraction consists of re-
curring periods; it is evident that the peviod will begin when-
ever any complete quotient is first repeated.
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We shall ca.ll the series of quotients

¥, fz‘-+a,’ ~./V+.«.z_‘ “/A:_'I'a“,.“...

Y Ty 3

the first, second, third, fourth...... complete quotients,

*358. From the preceding article it appears that the quan-
tities @, 7, by by b o are positive integers; we shall now prove
that the quantities o, a, @, ...... 3 T T Tp-..are also positive in-
tegers.

f

Let}3 — q" be three consecutive convergents to /¥, and

Ietp—,, be the convergent corresponding to the partial quotient 3.

. . 7
The complete quotient at this stage is of +-c-tv"; hence
7

J1V+a_,+ \
J T, g P P SV rap +rp

=~./1V+af.g,+g: ¢ JN+ag +rg’

Clearing of fractions and equating rational and irrational
parts, we have
ey trp=Ng, e +rg=p;
whence a,(pg -p'Q)=pp —ag' VN, r,(p¢ ~9q)=N¢*~p

But po'~pgq==1, and pg'-p'q, pp'—qq' ¥, Nq*—p" have
the same sign [Art. 344} hence a, and r_ are posmve mteg,ers

,\/ +

this investigation holds for all values of » greater than 1.

‘2

Since two convergents precede the complete quotient >

*350.  To prove that the complete and partial guotients recur.

In Art. 357 we have proved that r7_ = N-0' Alsor, and
r,_, are positive integers ; hence @, must be less than /&, thus
@, cannot be greater than «,, and therefore it canneot have any
values except 1, 8, 3, ...a,; that is, the number of different values of
8, cannot gxceed a,.

Again, &,,,=7b —a, that is b =a,+«,,, and therefore
b, cannct be greater than 2a; also b, is a positive integer;
hence », cannot be g1eater than 2a,. Thus », cannot have any
values except 1, 2, 3,...%, ; that is, the number of different values

qf v, cannof exceed 2a,.
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Thus the complete quotient -'-“/ Nr+ % cannot have more than

2¢.° different values; that is, some one complete quotient, and
therefore all subsequent ones, must recur.

. . .S .
Also b, is the greatest integer in Y ?+ a"-; hence the partial

quotients must also recur, and the number of partial quotients in
each cycle camnot be greater than 2a',

*360. To prove that a, <a +1,.

We have &, ta,= ba—lg’n--l 3
L, F O, =0T =7, .,
since &,_, is a positive integer ;
N SR A
2 .
But N-—G‘.ﬂ =TFa_y5
SN —a, <
B L (-

which proves the proposition.

*361. To shew that the period begins with the second partial
quotient and ferminates with a partial quotient double of the first.

Since, as we have seen in Art. 359, a recurrence must take
place, let us suppose that the (n + 1)* complete quotient recurs at
the {8+ 1)"™; then

w,=w,, r,=r, aud §=0_;

weo ghall prove that

b_ =&

=7 =t N1t

=, e w1}

—r T
We have

e W oy Aoy ¥ o _ .
rr'_]r__N wl=Newal=yr v =1 _7;

1=

Again,

+a =b _ 7

=1 " n=1"n—1I?

&, - :’L'_] = ‘rn—l (E)N—I - bl—l) 3

@ o+, =b_ 7 =07,

@ _ - :
e Al b =gzero, ov an integer,
7 n—I =1 0

-l
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But, by Art, 360, ¢, ~a

M and @, -

&,_, <7, ,; that ig

-— a,
- u—-l 3
@, —,_, <7r,_; therefore @, —a,_ < _ ; hence ——-—-——T is less

-1

than unity, and therefore must be zere.
Thus e, ,=a,_,, and also b,_, =b__,

Hence if the (n+ 1) complete quotient recurs, the »® com-
plete quotient must also recur; therefore the (n--1)% complete
quotient raust also recur; and so on,

This proof holds as long as » is not less than 2 [Art. 358],
hence the complete quotients recur, beginning with the second

JN +a
M

3
beging with the second partial guotient b,; we shall now shew
that it terminates with a partial quotient Za,.

’—‘-‘/—I—V—-tf" be the complete quotient which just precedes the

Ny . N
“/—ﬂ when it recurs; then -J—+—(f!
1

‘J‘u
and J

L are two consecutive complete quotients ; therefore

quotient It follows therefore that the recurrence

second complete quotient

a +a,=rb, rr=N—-a?;
but ¥ —=r,; hencer,=1.
Again, a, -, <7,; that is < 1; hence ¢, -, =90, that is
a,=a,.
Also e, +a, =7 b,=5; hence b, = 2a ; which establishes the
proposition.

*362. o shew that in any period the partial guotienis equi-
distant from the beginning and end are equal, the last partial
quottent being exchuded.

Let the last complete gquotient be denoted by "/N ; then

r.=1, a,=a, b =2

‘We shall prove that
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We have
)rn—l = ?'u 'rw—‘l. = N- a'ﬂ,g = J'V_ a'ls = T].'

Also
b =¥ bu—l 5

G T =8+ =0 0 =T
and a +a,=rb;
&= G =7 (bl - bn—'l) 5

@&, — @
¥ -1, = :
=f — b _, =zero, or an integer.

¥
&~ G, & - _ . @ —a,_ C - 4
But +——=1« 2 7 that is = 2~} which is less than
T 7 7y
=0 and b _ =

unity ; thus :zg —, = 0 ; hence o,
Similarly Toua =Ty & o=@, b, _,=5; andso on.
#363. From the results of Ards. 361, 363, it appears that

when a quadratic surd /& is converted into a continued fraction,

it must take the following form

o+ LT 4111
Vbbb + b+ 5, + b, + % +
*364, To obtain the penultimate convergents of the recurring
pertods.

Let n be the number of pertial quotients in the recurring

period ; then the penultimate convergents of the recurring periods
are the nth, 3xt 3nt .. . convergents; let these be dencted by

p L] P Sn p Br :
o respectively,
gn ’ Qm- g!n ’ P y
1 1 1 1 1
Now ,\/N=a]+b—l—:-£;-1ﬂbs—+ ..... —':‘;—2?'_ ......

go that the partial quotient corresponding to?éﬂi is 2a,; hence
nt+l

Past _ 20, Put Prcs

Totr 0 G+ Gy
The complete guotient at the same stage consists of the peried
1 1 1
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and is therefore equal to @ + /& ; hence
((I] + N/N) .?Jn +pn-1 .
(a'l + ’\/jv) Gt G

Clearing of fractions and equating rational and irrational
parts, we obtain

SV =

B, P = NGy GGG =P (1)
Again P can be obtained from % and Pzt by taking for the
quotient - i i
. 1 1 1
20 —— T iiasas N
Vb 4+ b+ b,

which is equal to .al +%. Thus
(ﬂu +‘?-)—") Pat o Vgt 22 p,

Do ;“ = = y from (1);

Ton (a + —'-‘) + 4., 2L g

1 q" ‘?n gn— -p g q

. Pacl) (& +§i)
’ g&u 2 q“ P"

In like manner we may prove that if Per is the penultimate
"

convergent in the ¢tb recurring period,
Uy Do+ Pen1 = Ny B ConF Gomes = P>
P Pun
¥ 1

and by using these equations, we may obtain ”
n in

cessively.
It should be noticed that equation (2) holds for all wultiples
of % ; thus
Pan _ L (&» . %).
oo 2 \fm  Pon/’
the proof being similar to that already given,
*365. In Art 356, we have seen that a periodic continued

fraction ean be expressed as the root of a quadratic equation
with rational coefficients.
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Conversely, we might prove by the method of Avt. 357 that

. 4
an expression of the form +G~/B where 4, B, C are positive

integers, and B not a perfect square, can be converted into a
recurring continued fraction. In this case the periodic part will
not usually begin with the second partial quotient, nor will
the last partial quotient be double the first..

For further information on the subject of recurring continued
fractions we refer the student to Berret's Cours &' dlgébre Supé-
rieure, and to a pamphlet on The Eapression of a Quadratic Surd
as a Continued Fraction, by Thomas Muir, M.A., F.R.8.E,

*EXAMPLES. XXVIIL b

Express the following surds as continued fractions, and find the
fourth convergent to each :

1. Ja+l. 2. JBa 3. Jai-1
1ol 2422 2%
4. \/14—&. 5. o+ 6. ate o,
7. Prove that
JaZ+3=3a+

and find the fifth convergent.
8. Shew that

9. Shew that
( + 1 1 1 ) 4 1 1 l
P L VL. S
PART pgay+ ag+ pea+ “PAT gayt pagt gat
10. If ./a¥¥1 be expressed as a continued fraction, shew that
. 2(a’+ 1) g =Pa—rtPas1s EPn=tn—1FTur1-
1 1 1 1
11 If = CI1+ ;;2_-{-_ C-L]_: + ceny
S S SR S
y= 96, + S+ Sa+ 2ap+
IR S S S
T Buy+ 3+ 3+ 3a+ 77
shew that x(yt— )+ 2y (22 a2y 4+ 3 (2 -7 =0.
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12. Prove that

I 1 i 1
18 1t T S BE A o
1 1 1 1
Y=t ar T b
shew that (abi+a+byz—(afh+atb)y=a? 82

14, If L% be the n convergent to /a4 1, shew that

Fn

PR+ +P2n_ﬂ=Pn+1Pn+2_Flﬁz .
el N o LR ARy RS N L)

15, Shew that

111 (o A Ly
a2+ b+ c+ b+ a+ c+ ) 14ab’

1

16. If ‘g-f denota the »* convergent to Jﬁ;

Patpst oot Pon1=Poa—Pay Gat @t G 1=%m =

, shew that

17. Prove that the difference of the infinite continued fractions
A3 IR
at+ b+ ot 7 b+ at+ e 7
a—b

]ﬁ&qu.ﬂ.ltﬁ'i-:‘_—az.

18. If /X is converted into a continued fraction, and if = is the
number of quotients in the period, shew that

=P fny  Pu=2p0 -+ (-1t

19. If ./¥ be converted into g continued fraction, and if the pen-
ultimate convergents in the first, second, ...&* recurring periods be
denoted by n,, ng,...n, respectively, shew that

b N (nl AN AL
ny— N *n.l-,JN) .



*CHAPTER XXVIII

INDETERMINATE EQUATIONS OF THE SECOND DEGREE.

#3686, The solution in positive integers of indeterminate
equations of a degree higher than the first, though not of much
practical importance, is interesting because of its connection with
the Theory of Numbers. In the present chapter we shall confine
our attention to equations of the second degree involving two
variables.

*367. To shew how to obluin the positive infegral values of
x and y which satisfy the equation
ax® + 2hxy + by”" + 2gx + 2fy + ¢ = G,
a, b, ¢, £, g, h being integers.
Solving this equation as a quadratic in x, ag in Art. 197, we
have
ax+hy +g== S —adyy + 2 (hg - af ) y + (g" —ac)...(L).

Now in order that the values of x and y may be positive
integers, the expression under the radical, which we may denots
by py + 2gy + v, must be a perfect square; that is

py* + 2qy + r = 2, suppose,
Solving this equation ss a quadratic in y, we have
Py + =g ~pr+pd;

and, as before, the expression under the radical must be a perfect
square ; suppose that it is equal to ¢°; then

£ —pt =g - pr,
where ¢ and » are variables, and p, g, 7 are constants.
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Unless this equation can be solved in positive integers, the
original equation does not admit of s positive integral solution.
We shall return to this point in Art. 374,

If @, &, A are all positive, it is clear that the number of
solutions is limited, because for large values of x and y the sign
of the expression on the left depends upon that of ax’ + 2kay + 5y
[Art. 269], and thus cannot be zero for large positive integral
values of z and .

Again, if %° - @b is negative, the coefficient of ' in (1) is
negative, and by similar reasoning we see that the number of
solutions is limited.

Ezample. Bolve In positive integers the equation
a® = day + Gy* — 2w ~ 20y =29,
Solving as a quadrstic in z, we have
s=9y+1+ /30+32y - I’

But 30+24y ~2y2=102 - 2 (y — ()%; hence (¥ — 6)? cannot e greater than
51. By trial we find thet the exzpression under the radicsl becomes &
perfect square when (i — 6)*=1 or 49; thus the positive integral values of y
are 5, 7, 18.

When y=5, z=21 or 1; when y=T7, 2=25 or 5; when y=13,
=28 or 25,

*368. We have seen that the solution in positive integers
of the equation
azx® + 2hay + by + 2gm + 2y + =0
can be made to depend upon the solution of an equation of the
form
. e Nyt =x g,
where & and « are positive integers.

The equation z'+ Ny*=-—a has no real roots, whilst the
equation 2°+ Ny® =« has a limited number of solutions, which
may be found by trial; we shall therefore confine our attention
to equations of the form =™ -~ ¥y == a,

*369. Lo shew that the equation x*~ Ny*=1 can always be
solved in positive inlegers.

Let /& be converted into a continued fraction, and let

ror
g ¥

g, 7 be any three consecutive convergents; suppose that
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N . . Ir
—“-/—Tif“ is the cemplete quotient corresponding to ‘?—),,-; then
,?“(pqt_})iq)zzp' rs_})m [Art. 358]

But »,=1 at the end of any period [ Art, 361];
PP =Nt =pq—py';
v being the penultimate couvergent of any recurring period.

¢

#
If the number of quotients in the period is even, }—), i3 &n even

convergent, and is therefore greater than /¥, and therefore
greater than g; thus p'g~pg'=1. In this case - Ng?=1,

and therefore x=p', y = ¢ is a solution of the equation =’ - My*=1.

Since £, is the penultimate convergent of any recurring

period, the number of sclutions is unilimited,

If the number of quotients in the peried is odd, the penultimate
convergent in the first period is an «dd. convergent, but the
penuliimate convergent in the second period is an even convergent.
Thus int?g'ral solutions will be obtained by putting x=p", y=gq,

where '237 is the penultimate convergent in the second, fourth,

sixth,...... recurring periods. Hence also in this case the number
of solutions is unlimited.

*¥370.  To oblain a solution in pusitive integers of the equation
xf— Ny\! == 1.

As in the preceding article, we have
7~ Ng®=p'g~pq.

If the number of quotients in the period is edd, and if }i,
is'an odd penultimate convergent in any recurring period, ‘;3; < g,
and therefore p'y — pg’ =~ 1.

In this case p®—Ng”=-1, and integral solutions of the
equation 2f — Ny’ =~ 1 will be obtained by putting z=p", ¥ =¢/,

/

‘where %is the penuliimate couvergent in the first, third, fifth...

recurring periods.
H. H. A 20
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Ezample. Solve in positive integers z®-13y?= £+ 1.
We can ghew that

1 1 1 1 1

NB=S -+ T Iy 65

Here the number of quotients In the period is odd; the penultimate con-
vergent in the first period is 1—;'; henee z=18, y=13 iz a sclution of
22— 18y%= - 1.
By Art. 364, the penultimste convergent in the second recurring period ig

1718 & . 649
3 (? + ﬁxw) , that is, %’
hence =649, =180 is & solution of £2-13y?=1.

By forming the successive penultimate convergenis of the reeurring
periods we can obtain any number of solutions of the equations

28-13y?= -1, and £* - I3*=+1.
*371. When one solution in positive integers of «®— Ny* =1

has been found, we may obtzin as many as we please by the
following method.

Suppose that @ = A, y=4% is a solution, % and % being positive
integers; then (A'— N&)"=1, ‘where n is any positive integer.

Thus of ~ Ny = (A" — NEY.
s Aty VY @y VY= + BN Y (A -k V)
Put z+ y /N =(h+ 5 JNY, oy /N =CR-EJN)Y;
= (A RSV (R -k SN
QN =(h+ b JNY — (b~ b J Y.
The values of « and y so found are positive integers, and by

ascribing to n the values 1, 2, 3,..., as many solutions ns we please
ean be obtained.

Similarly if @=»4, y=% is a solution of the equation
&' — Ny"=—1, and if n is any odd positive integer,

&t~ Ny = (7 ~ NIy

Thus the values of z and y are the same as already found, but
n is restricted to the values 1, 3, 5,.......

*372. By putting 2 =ax’, y = ay’ the equations 2* - Ny® = + of
become «*— Ay* =1 which we have already shewn how to

solve,
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#373. We have seen in Art. 369 that
PN = (pg ~pg) ==,
Hence if a is & denominator of any complete quotient which
occux:s in converting ,/.V into a continued fraction, and if Iﬂ: is

the convergent obtained by stopping short of this complete
quotient, one of the equations &’ — ¥y' =+a is satistied by the
values z =2, y=¢"

Again, the odd convergents are all less than /X, and the

/
even convergents are all greater than /¥ ; hence if E—, is an even
q

!

7
g

is an odd convergent, x =p', y=¢ is a solution of 2° — N3 =—a.

convergent, # =p', ¥ =¢’ is a solution of 2" - M= q: and if

*374, The method explained in the preceding article enables
us o find a solution of one of the equations a® — y* =+ g only
when ¢ is one of the denominators which occurs in the process of
converting /& into a continued fraction. For example, if we
convert /7 into a continued fraction, we shall find that

111
I+ 1+ 1Ty 45

and that the denominators of the complete quotients are 3, 2, 3, 1.

,:/7:2-{-

" The successive convergents are

2 3 5 & 37 45 82 127
l) 1\ 2? 3! 1 3 17: ﬁ, 48, ...... 3

and if we take the ¢ycle of equations
' =Ty =3, 2T =8 2-Tyf=~3 2" -Ty'"=1,
we shall find that they are satisfied by taking
for = the values 2, 8, 5, B, 37, 45, 82, 137,......
and for y the values 1, 1, 2, 3, 14, 17, 31, 48,......

*375. Tt thus appears that the nuinber of cases in which solu-
tions in integers of the equations &" — Ay® = = a can be obtained
with certainty is very limited. In a numerical example it may,
however, sometimes happen that we can discover by trial a

20—2
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positive integral solution of the equations o®— Ny' =g, when
is not one of the above mentioned denominators; thus we easily
find that the equation & f_7Ty' =53 is satisfied by ¥=2 z=9.

When one solution in integers has been found, any number of
solutions may be obtained as explained in the next article.

*376, Suppose that x =7, ¥ =g s a solution of the equation
o' — Nyf =6 ; and let z =2, y = & be any solution of the equation
2~ Ny*=1; then
x:? . Nyﬂ — (fl - ﬂvgﬁ) (ke — Nkﬂ)
= {fh o= Ngh)' — N (f&=gh),
By putting & =fh+Ngk, y=7k=gh,

and ascribing to 4, & their values found as explained in Art. 371,
we may obtain any number of solutions.

%377, Hitherto it has been supposed that & is not a perfect
square ; if, however, ¥ is a perfect square the equation takes the
form 2* —n'y = @, which may be readily solved as follows.

Suppose that & = be, where b and ¢ are two positive integers,
of which & is the greater; then

(e + ny) (. —ny) = be.

Put z+ny=d w—my=c; if the values of z and y found
from these equations are integers we have obtained one solution
of the equation; the remaining solutions may be obtained by
ageribing to b and ¢ all their possible values.

Ezample. PFind two positive integars the difference of whose squares is
aqual to 60.

Lot 2, » be the two integers; then «? - 3%=60; that is, (x+y){s—y)=860.
Now 60 is the prodnet of any of the pair of factors
1, 60; 2, 30; 8, 20; 4,15, b,12; 6, 10;
and the values required are obtained from the equations

=+ y=30, © z+y=10,
e-y= 2; z—gy= B;

the other equations giving fractional values of 2 and ¥,

Thuoa the numbers are 16, 14; or 8, 2.
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Cor. In like manner we may obtain the solution in positive
integers of
ax” + ey + by + 2gx + Yy + o=,
if the left-hand member can be resolved into two rational linear
factors,

*378. If in the general equation &, or &, or both, are zero,
instead of employing the method explained in Art. 367 it is
simpler to proceed as in the following example.

Ezample. Solve in positive integers
2wy~ 4xt4+ 195 —5y=11.
Expressing y in terms of x, we have
4z2- 122411 : 5

y= 2x-3 =2e _1+2x-5'

8 .
57E must be an integer; hence 2z-5

must be equal to =1, or £2, or +3, or =86.

The cases =+ 2, =6 may clearly be rejected; hence tha adrmnisaible valuea
of 7 are obtained from 27—5= *1, 2z~5=23;

whenee the values of x are 3, 2, 4, 1.

In crder that i may be an integer

Taking thess values in succession we obtain the solutions
z=3, y=11; 2=2, y=-3; a=4,y=9; z=1, y= -1,
and therafore the edmissible solutions are
=8, y=11; z=4, y=9.

*379. The principles already explained enable us o discover
for what values of the variables given linear or quadratic
functions of # and y become perfect squares. Problems of this
kind are sometimes called Inophantine Problems becanse they
were first investigated by the Greek mathematician Diophantus
about the middle of the fourth eentury.

Ezample 1. Find the general expressions for two positive integers whioh
are such that if their product ia taken from the sum of their equares the
difference is a perfect square.

Dencte the integera by = and %; then
%%~ zy + ¥ =17 suppore;
w{z-y)=2-3%
This equation is satisfied by the suppositions
ma=niz+y), n(z-y)=ml-y),

where m and « are positive integers.
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Hence g -y —nz=0, nr4{m-njy-mz=0.
From these equations we obtain by cross multiplication
t _ ¥ .
Zmp—-nt mE-n? wE-mnint’

and since the given equation iz homogeneons we may taks for the general
solution
z=3mn—n?, y=mi-nd, r=md-mn4+n’

Hera m and # are any two positive integers, m being the greater; thus if
m="7, n=4, we have
=40, y=188, 2=37.

Ezample 2. Find the genersl expression for three positive integers in
arithmetic progression, and such that the sum of every two iz a perfect
BguATSe.

Denote the integers by =~ », w+y; andlet
-y=p% 2m=g% Smty=rty

then PP +ri=2gt,
or . - gi=g®-p

This equation is satisfied by the suppositions,

mr-g)=n{g-p) n(r+q)=m{g+p)

where m and n are posilive integers,

From these equations we cbtain by eross multiplioation

-, ——~? = g = T
m?+0mn-m2 miin? miaQmy—nt

Hence we may take for the gensral rolution

p=0*+2mn—wd, g=mI+n? r=pf e Dnn— n?;
h 1 e o I,
wheneca .'€=§('ﬂl“+ﬂj » Y=4mn (m? —n?),

and the three integers can be found. .

From the value of z it is cloar that m and n are either both even or both
odd; also their values must be such that z is grester than g, that is,

(m? + 12 > Bmm (m? — m3),
or mi{m — Bn) + 2mind + Smad £ 0t 0
which condition is satisfied if m = &n.

If m=9, n=1, then x=8362, y=2880, and the numbers are 482, 3362,
6342, The sums of these taken in pairs are 3844, 6724, 9604, which are the
squa.re! of 62, 82, 98 respectively.
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*EXAMPLES. XXVIII,

Solve in positive integers:

1. 52— 10ay+ Tyr="T7.. 2 Tat—2zy+3yt=27.

3 -4y 5t - l0a=4 4, sy—-w-y=8

5. 3x+3ay—4y=14, 6. 42?2 —3?=315.

Find the smallest solution in positive integers of

7. &t-ldyt=1 8. a®-18P=1 9, 2t=dlyt-1,
10, #2--Gly2+5=0, 11, a®-Tp-9=0,

Find the general solution in positive integers of

12, #-3y2=1 13, »i-5y2=1. 14 #-172=-1.

Find the general values of # and y which make each of the following
expressions a perfect square:

15. 2% — 3y + 3 16, 2%+ 2oy + 2y% 17, 58402

18. Find two positive integers such that the square of one exceads
the square of the other by 105.

19, Find a general formula for three integers which may be taken
to represent the lengths of the sides of & right-angled triangle,

20. Find a general formula to express two positive integers which
sre such that the result obtained by adding their product to the sum
of their squares is a perfect square, :

21. “There came three Dutchmen of my acquaintance to ses me,
being lately married ; they brought their wives with them, The men’s
names were Hendriek, Claas, and Cornslius; the women’s Geertruij,
Catriin, and Anna; but I forpot the name of each man's wifa. They
told me they had been at market to buy hogs; each person bought as
many hogs as they gave shillings for one hog; Hendrieﬁ bought 23 hogs
more than Catriin; and Claas bought 11 more than Geertrui}; likewise,
each man laid out 3 guineus more than his wife. I desire to kmow the
nsme of each man's wife” (Miscellany of Mathematical Problems, 1743.)

22, Shew that the swn of the first # natural numbers is & perfect
square, if = is equal to 42 or £2—1, where £ is the numerator of an edd,
and &’ the numerator of an even convergent to /2.



CHAPTER XXIX.

SUMMATION OF SERIES.

380. Exumples of summation of certain series have occurred
in previous chapters; it will be convenient here to give a
synopsis of the methods of summation which have already been
explained. :

(i) Arithmetical Progression, Chap. IV.

(ii) Geometrical Progression, Chap. V.

(iii) Beries which are partly arithmetical and partly geo-
metrical, Art. 60.

(iv) Sums of the powers of the Natural Numbers and allied
Series, Arts. 68 to 75,

{v) Summation by means of Undetermined Coefficients,
Art. 312,

(vi) Recurring Series, Chap. XXIV.

We now proceetl to discuss methods of greater generality ;
but in the course of the present chapter it will be seen that some
of the foregoing methods may still be usefully employed.

381. If the +*® term of a series can be expressed as the dif-
ference of two quantities one of which is the same function of »
that the other is of r— 1, the sum of the series may Le readily
found.

For let the series Le denoted by
Uyt Uy L U,

and itg sum by 8, and suppose thut any term u_can be put in
the form v —v,_,; then
S =(n,—v )+ (v~ )+ {v—v)+. (v, _ —v,_)+(v —v )
=g -,
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Ezample. Sum to = texms the series
1 + 1 1
0¥ (+%)  +20) (L+80)  I+3a1(iede) "
If we denote the series by
U+ U+ Uyt .. + by,

171 1
we have 1:1:_% eyl m_z) \

s 1
.*. by addition, (_ - )
I4+F linsl.x

= ®
(+2)(14+n+1.2}

382. Sometimes a suitable transformation may be obtained
by separating u,_into partial fractions by the methods explained
in Chap, XXTIL.

Erxample. Find the sum of
1 a a?
0% (ran) T (¥ lran) T (iiadn
a1 A
T+ (l+az) 14z + Ty g PUTPese:
o et l=A L+ atz)+ B (14-a™ 1z},
By putting 1 +a""'s, 1+ 4™z equal 1o zero in succession, we obtain

.. to n terma,

The nts term =

an—l ah
B T A gy
1 1 4
Heace it (e i)
- 1 a a?
similerly, "2=l—a(14—a,z 1-!?5’%)'
1 ah‘l a™
B (1-}-:1"'_‘"—15 - 1+a“z>'
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383.  To find the sum of n terms of @ series each term of which
¢ composed of T factors tn arithmetical progression, the first factors
of the several terms being 1n the same arithmetical progression,

Let the series be denoted by o, + ua+ oy +...... + Uy,
where

Ug=(at+nb){a+n+l.b)(@a+n+2.8) .. (at+tn+r—1.5)
Replacing # by n—-1, we have
= {@+n-1.8)(e+nd) (a+n+1.8) .. (a+n+r—2.0);
g n—1 . Dug={a+ntr—1.8) u, ;=v,, say.
Replacing = by n+ 1 we have
(G+n47.B) Un=1,,;
therefore, by subtraction,
P+ D). u, =0, — v,
Similarly, (r+1) 8. U, =2, — b,y
(r+ 1)B. ug= vy —wy,
(r+1)b . uy=n—.
By addition, (r+1)b. Sy=va,,—o;

that i, 8, = “(’:j: I)”g
_(15;4-;-3-5-':'.EJ)?..*,,E ]
TrenE O

where.C' is a quantity independent of n, which may be found by
ascribing to = sorue particular value.

The above result gives us the following convenient ruls:

Write down the 0™ ferm, afix the next factor at the end, divide
by the number of factors thus increased and by the common differ-
ence, and add a constant,

. i = — 1}1 = - a .7 1
It may be noticed that (= S A 1)6“1’ it is
however better not to quote this result, but to obtain € as above
indicated.
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Ezample. Find the sum of n termn of the series
1.3.5+83.5.7+5.7-9+......
The n'® term is (2n ~ 1) (2n+ 1) (2r+3); hence by the rule

_On-1)@nt 1) @n:3) 2n45)
- 4.4 R

Sa

To determine ¢, put »=1; then the series reduces to its first term, and
_1.8.5.17
T8
Zn—1)(2n4+- 1) (2n+3)(3n+5) 15
P Sﬂ= 4
8 8
=n (27" + Bu? + Tn — 2), after reduction.

1
wa have 15 +{¢; whence =,§. ;

384. The sun of the series in the preceding article may
also be found either by the method of Undetermined Coefficients
[Art. 312] or in the following manner.

Wehave v, =(2n - 1) (2n+ 1) {(In +3) = 80"+ 130* — 2n - 3;
08 =830 + 1230F — 330 - 3n,
using the notation of Art. 70,
8=+ 1+ 2n{(n+ 1) (2n+ 1) - n(n+ 1}~ 3n
=n(2n'+8n°+ Tn-2).
385, It should be noticed that the rule given in Art. 383 is
only applicable to cases in which the faetors of each term form an

arithmetical progression, and the fiest factors of the several terms
are in the sams arithmetical progression.

Thus the sum of the series
1.3.5+2.4.6+53.5.7+

may be found by either of the methods suggested in the preceding
article, but not directly by the rule of Art. 383, Here

...... to 14 terms,

w=n{n+2n+d=nln+rl+1)n+2+2)
=nf{n+l}(r+2)+m(n+ 1) +n(n+2}+2n
=nfn+ D {n+2)+3nln+1)+3n
The rule can now be applied to each term ; thus
S=nn+(n+@+3)+n(n+1)(n++3un+s )+
=1 n{n+1) (rn+4) (n+5), the constant being zero.
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386. T find the sum of n terms of @ series each term of which
¢ composed of the reciprocal of the product of v factors in arith-
metioal progression, the first fastors of the several terms being in
the same arithmetical progression,

Let the series be denoted by wy + g + 45+ ... .- + Uy,
where

$=(9+ﬂb)(a+i"$'1.b)(aﬂlaTﬂ.b) ...... (a+n+r—1.b)

Replacing n by n— 1,

! =(a+n-1.b)(a+nd) (@+n+1.8). .. (@a+rn+rr—2.b);

(a+m B, =(a +n— L. B) wy_, =v,, say.
Replacing » by n+ 1, we have
{a+nb) %y =vnn;
therefore, by subtraction,
{r—1)b. %y =1 —Vn,1.
Similarly (r=138. tn1 =0y, — 2,

(r=1) b ug=v,— 7,
r=13b.uy=v —v,.
By addition, (r=1}5.8,=v,—v,,1;
. )~ a + nb) u
thab is R T
where (' is a quantity independent of n, which may be found by
-ascribing to » some particular value,
1 1
-1)b (a+n+1.b)... (a+nsr—1.5)
Hence the sum ruay be found by the following rule:
Write down the n® term, strike off a factor from the beginning,

divide by the number of factors so diminished and by the common
difference, change the sign and add a constant.

Thus S,'=0—

The value of (= " :’1]) 7= (fj ;)Z)b % ; but it is advisable in

each case to determine € by ascribing to # some particular value.
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Example 1. Tind the sum of # terms of the series
oy, 1 1
1.9.3.4" 2-3-4-5+3—.4.ﬂ+ ......

1

th i — -
The n term is n(n+1j{n+ 8 (n+3)’

hence, by the rule, we have

1
Sl TR R )
Put u=1, then —-—1 = N whenca G--l-'
= 1.2.3.¢ ~3.2.3.4° 18’
8= 1 1

187 8m+1)(n+2) (n+3) "

By making n indefinitely great, we obtain 8, 118

Exzample 2. Find the sum to » terma of the series

3 4 5
T3 278354816

Here the rule is not directly applicable, becanse although 1, 2, 3, ...... .
the first factors of the several denominators, are in arithmetical progreasion,
the factorz of any one denominstor are not. In this example we may
proceed as follows:

v n+2 . {n+ 2
BTt ) (n-+3)  ninl}(n+2}{n+3)

_ mn+l)+3n+4d

Tualn+1) (n+ 2 (n+3)

! . 3 4

B T R PG T O e Y AT Ly T i

Each of these expressions may nmow be saken as the nit term of a series
to which the rule is applicable.

I, SR SR, S,
TR Tl T B+ d)(n+8) 3(n+liimt2i{n+8)’
put n=1, then
3 1 8 4 %
17571 0TI EETE R85 TR O
2% 1 3 4

S R T T T it BmiD (e
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387, In cases where the methods of Arts. 383,386 are directly
applicable, instead of quoting the rules we may always effect the
summation in the following way, which is sometimes called ‘the
Method of Subtraction’

Ezample. Find the sum of » terms of the series
2.54+5.8+8.11+11. 14+ .. .
The arithraetical progression in this case is
9.5, 8 11, 14,.....

In each tarm of the given series introduce as a new factor the next term
of the arithmetical progression; dencte this series by §', and the given serios
by &; then

§=0.5.845.8.114+8.11. 14+, . +(3n-1)(3a+9) (3n +5);
5 -9.5.8=5.8.11+8.11.14+11.14.17+... to (m~1) terms.
By subtraction,
-2.5.8=54(5.848,11+11.14+ .. to(n— 1)terms] - {3n— 1} (3n-+2) (Bn +3),
. -2.5.8=9[S~2.5]- (3Ba-1)(8n-+2) (3n+5},
98 =(3n-1) (Bn+2) (3n+5)~2.5.8+2.5.9,
S=n{3n* +én+1).
388. When the n term of a series is a rational integral

fupction of n it can be expressed in a form which will enable us
readily to apply the method given in. Art. 383.

For suppose ¢ (n=) is a rational integral function of n of p
dimensions, and assume

p(ny=A+Bn+Cnin+ )+ Dnln+1)(n+2)+.. ...

where 4, B, C, D,...... are undetermined constants p+1 in
number.

This identity being true for all values of 7, W& may equate
the coefficients of like powers of n; we thus obtain p + 1 simple
equations to determine the p + 1 constants.

Example. Find the swm of 2 terms of the series whose genersl terns is

2t 6n® 4 5wt
Assume

W+t + 8 =A+Br+Cn{ntlj+Drin+ 1) (n+2) + En(nt+ 1) (n+2) (n+3);

it ia at once obvious that 4=0, B=0, E=1; and by puitingn=-2,n=-3
successively, we obtain =~ 5, D=0, Thus

ad 4608+ Snt=n(n i 1) (n+2) (n+ 8}~ brin+1).
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Hence S,.:%n (Bt 1j(n+2(n+3)(nt+4) - Infn+1)(nt2)

=%ﬂ (nt1) (n+2) (074 T4 2).

Poryaonan anp Frevrare NUMBERS.

389. If in the expression n + n(n—1)5, which is the sum
of n terms of an arithmetical progression whose first term is 1
and common difference b, we give to & the values 0, 1, 2, 3, ...,
we get
n, g0 (n+1), #), Jn(dn—-1),....
which are the ™ terms of the Polygonal Numbers of the second,
third, fourth, fifth,... .. orders; the first order being that in which
each term is unity. The polygonal numbers of the second, third,
fourth, fifth,......orders are sometimes called linear, triangulor,
square, pentagonal,... ..

390. To find the sumn of the first n terms of the ™ order of
polygonal numbers.
The n™ term of the r** order is % + 3 {n - 1) (r - 2);
S =3+t (r-NI3(n-Dn
=in(n+1)+4(r-2)(n—1)n{n+1) [Art. 383]
=gnf{n+ 1) {{r—2)(n—1}+ 3}
391. If the sum of » terms of the series
LLLLL ...

be teken as the ™ terin of o new series, we abtain

M , which is the aum of n terms of the

If agsin we take
last series, as the »™ term of a new series, we obtain
1, 3, 6,10, 15, .......
By proceeding in this way, we obtain a succession of series
such that in any one, the n!® term is the sum of » terms of the

preceding series. The successive series thus formed are known
as Figurate Numbers of the first, second, third, ... orders.
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394, 7o find the 't term and the snwm of n terms of the rib
order of figurate numbers,
The #® term of the first order is 1; the =™ term of the
second order iz n; the n'® term of the third order is ¥n, that is
7n{n+1)

in(n+1); the n'" term of the fourth order is 3 R that is
2 9
mina1) (n42) ; the »! term of the fifth order is 3 M)
1.2.3 1.2.3 °
9 1
that is 202 D (_““-"‘Tj:-‘) w3 5 and 80 oL
Thus it is es.sy_to see that the »™ term of the + order is
nn+tl)le+r3) .. (n+r-2) i o+ =2 .
{r-1 2 0 jn—llr-—l

Again, the sum of » terms of the »™ order is
a(n+1){(n+2) ... (n+r=1)
I” ‘

which is the nt" term of the (++ 1)* order.

Korc. In applying the rule of Art. 883 to find the som of # terms of
any order of figurate numbers, it will be found that the constant is elways
Zero,

393. The properties of jfigurate numbers are historically -
interesting on account of the use made of them by Paseal in
his Praité dw triangle arithmétique, published in 1665.

The following table exhibite the Arithmetical Friangle in its
gimplest formn

1 1.1 1 1 1 1 1 1 1
1 2 3 4 5 &6 T 8 9

1 8§ 6 10 156 21 28 36 ..

1 4 10 20 35 56 84 ..

1 & 15 35 70 126 ..,

1 6 21 56 186 ...

1 7 28 84 ..

1 8 36..

1 9.

1.
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Pascal constructed the numbers in the triangle by the follow-
ing rule :

Each number 15 the sum of that immediately above it and that
smmediately to the left of it;

thus 16==4+10, 28= 7+21 126 =56 + 70

From the mode of construction, it follows that the numbers in
the successive horizontal rows, or vertical columns, arve the figurate
numbers of the first, second, thivd, ... orders.

A line drawn so as to eut off an equal number of units from
the top row and the left-hand column is called 2 base, and the
bases are numbered beginning from the top left-hand corner.
Thug the 6th base is a line drawn through the numbers 1, 5, 19,
10, 5, 1; and it will be observed that there are six of these num-
bers, and that they are the coefficients of the terms in the ex-
pansion of (1 + )"

The properties of these numbers were discussed by Pasca
with great skill: in particular he used his Adrithmetical Triangle
to develop the theory of Combinations, and to establish some
interesting propositions in Probability. The subject is fully
treated in Todhunter's Mistory of Probability, Chapter 11,

394, ‘Where no ambiguity exists as to the number of terms
in a series, we have used the symbol % to indicate summation;
but in some cases the following medified notation, which ihdicates
the limits between which the summation is to be effected, will be
found more convenient.

Let ¢ () be any function of =, then E ¢ (x} denotes the sum

of the series of terms obtained from ¢ (m) by giving to z all pom
tive integral values from I to m inclusive.

For instance, suppose it is required to find the sum of all the
terms of the series obtained from the expression

(p=1)(p=2}...(p~17)

|r

by giving to p all integral velues from r+ 1 to p inclusive.
H.H. A. _ 21
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Writing the factors of the numerator in ascending order,

the required sum = 5 p-np=rrl)..(p-1)

pmrtt |~
=—[—_ 9.3, ..7+2.5. 4, {r+ D)+ +{p—)(p-r+1) ... (p-1}}
1 -7 —r4l 1
’r( He- :+1) w-le [Art. 383.)
_p(=Dip-2).. (p=7)
|‘?'+1

Since the given expression is zero for all values of p from 1 to
r inclusive, we may write the result in the form

(- D(p= . (p-n) 2 D=2 (p=1)
~ c 7l
EXAMPLES, XXIX. a.

Sum the following series to » terms:

1, 1.2.3+42.3.443.4.540...

2, 1.2.3.4+2.3.4.543.4.5.6+......

3 1.4.74+4.7.104+7.10.13+......

4 1.4.7+%2.5.843.6.9+......

5, 1.5.8+2.6.104+3.7.11+......

Sum the following series to » termas and to infinity

8. 1‘]:'§,+§'T‘§+3%;+ ......

. Th"'&?*"'?.l_m"‘

3. 1.;.5*'3.;.7*‘5 E, e

: 1_.1_.77+Z."717’6+7.1f1) gt
10. 1.;_3'1'2':_4-1—3.3_5-% ......
1 3-‘11.5+4.§.6+5.3.7+‘

12 1.;.3"’2.3.4*5":;‘—5 gt
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Find the sum of # terms of the series -
13. 1.3.2042.4.324.3.5,424+,. ..
4 (P -1542(nf -3+ 3(RP =304 ...,

Find the sum of » terms of the series whose »2 ferm is

15. »2(»?—1) 16, (n*+5n44)(n?+5n+8).
2*(n?~1} e e

W a1 18. nitn
nd+ 3042042 ntnd4]

e AR ™

21. Shew that the 2™ term of the »* order of figurate numbers is
equal to the 7 term of the 2 order.

22. 1f the #™ ferm of the »* order of figurate numbers ia equal to
the {n+2)* term of the (= — 2)* order, shew that r=n+2,

23. Shew that the sum of the first n of sll the sets of polygonal
numbers from the linear to that of the »* order inclusivs is

0’—_'—1}-?2—@—& {rn—2n—r+8).

SvumsmaTion 3Y THE METHEOD OoF DIFFSRENCES.

395. Let w, denote some rational integral function of n, and
let 2, 4y, 3, ty,... denote the values of u, when for » the values
1, 2, 3, 4,... are written successively,

We proceed to investigate a method of finding u, when a
certain number of the terms w,, uy, %, %, ... are given

From the series u,, w,, 13, %, %,... obtain s second series
by subtracting each term from the term which immediately
follows it.

The series
Ug— Uy, Uy Uy, Uy U, Uy— Yy, .-

thus found is called the serdes of the first order of differences, and
may be conveniently denoted by .
Aw, Awu,,
By subtracting each term of this series from the term that

immediately follows it, we have
Ay~ An,, Ay Drgy,  An,— Ay,

which may be called the series of the second order of differemnces,
and denoted by

Ay, Aug,. ..

Astty, Ay, Agu,...
21—2
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From this series we may proceed to form the series of the
third, fourth, fifth,... orders of differences, the general terms of
these series being Agu,, A2, Agty, ... respectively.

From the law of formation of the series
Uy, Mg, Uy, g gy Ugyersrerseens
Dag,  Aug, Ay, Aw,, Aug, ...
Ay, Agt, Mgty Dol oo
gt Age, Age,....o.l.

it appears that any term in any series is equal to the term
immediately preceding it added to the term below it on the left.

Thus w4y =y + Ay, and Awu, = A + Agu,.
By addition, since #, + Au, =1, we have
thy =ty + 2Au; + Agey.
In an exactly similar manner by using the second, third, and
fourth series in place of the first, second, and third, we obtain
Adey = Ary + 2Ayu, + A,ul.
By addition, since ug + A, = u,, we have

4:“: + 3Au, + 3Agm, + Ay, .

8o far as we have proceeded, the numerical coefficients follow
the same law as those of the Binomial theorem. We shall now
prove by induction that this will always be the case. For sup-
pose that '

% {n—~1 '
L Uy =+ AN +-—(1~'—2—) Al 4.+ A0+ + A

then by using the second to the (n + 2)* series in the place of the
first to the (m + 1)™ series, we have

(ﬂ- 1)

Aty = A2 + g, + —r—pt Agu + .o+ ™ r._1Ar“1 Y W .

By addition, since w,,; + Au,,; =u,,,, We obtain

Uppe=U + (0 + DAu + .+ ("0 +7Cy) B + .. +A.,;+lez1.
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But *C,+"C, = (”—'—:;ii + 1) <0,y =2t e
p
mtlhnx-1) (@m+l-rs 1)
1.2.8 ... (r~-1v
Hence if the law of formation holds for Uy it aiso holds for

Upn,a, Dub it Is true in the case of w,, therefore it holds for 1, and
therefore universally, Hence

n+]c’

-1 -9
?"'1 ('?3 1} Au + )(n ) »3"'1 + ...+ A'.v!.—l?“!.'

396. To find the sum of % termg of the series
Uy Uy, Wy, Up,eeeeee
in terms of the differences of .
Suppose the serieg u,, u,, t,... ig the first order of differences
of the series
By, Vay Vg, Tgyenn
then v,,; = (Uny; = o) + (v, — Vpa) +ee + (05— v,) + v, identically ;
Y Upgr = Ut Uy el U F 2y F O
Hence in the series
0wy w2, w5
Uy, gy g,  Hgye.....
Ay, Ay, Avg......
the law of formation. is the same as in the preceding article;

1
. v,,“=0+?m1+n(;z 3 )Aul U L W T

that is, w, + 2y + g+ ... + Uy,

=m&1+n(ﬁ"; 1) A, +n(n—-i)2:(n—2)

Ay + 0+ Ay,

The formule of this and the preceding article may be ex-
pressed in a slightly different form, as follows: if ¢ is the first
term of a given series, d,, d,, d,,... the first terms of the suc
cessive orders of differences, the n™ term of the given series is
obtained from the formula

a+(n-1)d+ 2222 d2+("“*1)(""‘&9‘)(”"3)ds+ "
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and the sum of » terms is
n{n— 1) ﬁ.(n— D) {n— n{n—1)(n—2{n-3)
d.,_ ayt+
12 13 ]‘i

Find the genersl terma and the sum of « ferms of the seties
12, 40, 90, 168, 280, 432, .

Exzomple.

The successive orders of difference are

22 (n-1 -2 6in-1 -2 -
Hence the n* term =12 + 28 (n -1} + (n E]{ﬂ ) Sl (n-2) (n-3)
=+ 5nd+ Br.

The sum of @ terms meay now be found by writing down the valve of

T i+ 55t +6Zn. Or we may use the formula of the present article and
- 22 2 - - —
obtain s,‘=12n+28“’{"' 1), 2rn-1i(n-2) bnn-1)(n-2) -3
2 B z

12 (307 + 26+ 690 + 46),
1 2
=75n(n+1) (3n+ 28n+46).

39%. Ttwill'be seen that this methed of summation will only
succeed when the series is such that in forming the orders of
differences we eventually come to a series in which all the terms
are equal. This will always be the case if the ™ term of the
series is & rational integral function of «.

For simplicity we will consider a function of three dimensions;
the method of proof, however, is perfectly general,

Let the series be
U R U U U U AU U
where u, = A+ Buf+ Cn 1+ D,

and let v, w, » denote the n™ term of the first, second, third
orders of dlﬁ'eren.oes 3
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then o,=%,, —%, =43 +3n+1}+B(In+1)+C;

that is, 9, =34n"+ (34 +2B)n+ 4 + B+ C;
Similarly  w =v, -9 =34 (2n+1)+34 + 2%
and =, ~w, =64,

Thus the terms in the third order of differences are equal;
and generally, if the n* term of the given seriesis of p dimensions,
the terms in the p* order of differences will be equal.

Conversely, if the terms in the p™ order of differences are
equal, the »* term of the series is a rational integral function of
n of p dimensions,

Ezample, Find the #'* term of the series -1, -3, 3, 28, 63, 125,......

The successive ordere of differences are

-2, 6, 20, 40, 66,......
8, 14, 20, 26,......
B 6 6.
Thuse tha terms in the third order of differences are equal; hence we may
asaume uy= 4 + Bn+ Cnt 1+ Drn?,

where 4, B, €, D have to be determined.

Putting 1, 2, 3, 4 for » in succession, we have four slmmltaseous
_equations, from which we obtain 4=38, B=-8, 0=-2, D=1;

henee the general term of the series is 3 - 3r--2n% 4+ 3.

398. If u i & rational integral function of p dimeisions
@n n, the geries
G +ax+ar+. .tz
ity @ recurring aeries, whose scale of relation 48 {1 — x)**\
Let § denote the sum of the series; then
S{l~-z)=a +(a -a)ete-a)x+. . +{a, ~a,_ )2 —ag™
=@, +bx+ b+ . +bE —axt sy,
here b = a_—a,_,, so that b, is of p~ 1 dimensions in 1,
Multiplying this last series by 1 — o, wo have
S{1-=)®
=gt (b, ~a)u+ (b~ b )’ +.. 4+ {by—b, ) —(a,+b )" +a x
=g, +(b - amrem roa’+ . Fox—(a, +h ) ra ™, say;

here ¢, = b, --b,_,, 50 that ¢, is of p — 2 dimensions in n.
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Hence it follows that after the successive multiplications by
1 —x, the coeffieients of =" in the first, second, third, ... produects
are general terms in the first, second, third, ... orders of differences
of the coefficients,

By hypothesis «, is a rational integral function of = of »
dimensions ; therefore after » multiplications by 1 -2 we shall
arrive at a series the termsg of which, with the (,xception of p
terms ab the begmnmg, and g terms at the end of the series, form
a geometrieal progression, cach of whose coefficients is the same.

[xtrt 397
Thus Sl—ayp=k(x+2" +... +3") +f (),

where % is a constant, and f(a) stands for the o terms at
the beginning and p terms at the end of the product.

2 8 (- =22 s,
b L=+ (A= f ().
="

thus the series is a recurring series whose scale of relation is
(1—-e)y*. [Art. 325.)

If the general term is not given, the dimensions of @, are
readily found by the method explained in Axt. 397.

that is, S=

Ezample. Find the generating funetion of the series
| 3455495+ 1558 230 + 33754 ...

Forming the suceessive orders of differences of the coeffieients, we have
the geries

thus the termp in the second oxder of differences are equal; hence a, ie a
rational integral function of # of two dimensions; and therefora the seale
of relation i3 (1 - z)°. We have

S=8+5x+ 927+ 1524282448325 ..
-8z8= -83-15x3-2Tx% —d5xt- 6925~ ...,

a8 = 0224 152% + 2724+ 4625+ ...
-2 = - 329 Bxb- 9zt-
By addition, {1-z)*§=3 - dr+3z%;
- 1
S=3 iz + 37
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399. We have seen in Chap. xxtv. that the generating
function of a recurring series is a rational fraction whose denomi-
nator is the scale of relaticn. Suppose that this denominator can
e resolved into the factors (1 —ax) (1 —da) (1 —ca)...... ; then the
generating function can Le separated into partial fractions of the

. i R B N ¢

l—ax 1-%z l-cx
Each of these fractions can be expanded by the Binomial Theorem
in the form of a geometrical series; hence in this case the re-

curring series can be expressed as the sum of a number of
geometrical series.

forw

If however the scale of relation contains any factor 1 —ax

more than once, corresponding to this repeated factor there will be

. 4 ; which

(1 —az)’ (1 -ax)® " ?

when expanded by the Binomial Theorem do not formn geometrical

series; hence in this case the recurring series cannot he expressed
as the sum of a number of geometrical series.

partial fractions of the form

400. The successive orders of differences of the geometrical
progression

. a, ar, ar’, ar’, ar', ar®, ...
are aflr—1Y a(r—1)r, a{r -1} alr—1)". ...
a(r =15, alr-1Y7, a(r-1¥7

which are themselves geometrical progressions having the same

common ratio » as the original series. :

401. Let us consider the series 1 which -
— =)
= ar'"™" + ¢ (n),

where ¢(n) is » rational integral function of n of p dimensions,
and from this series let us form the successive orders of differences.
Each term in any of these orders is the sum of two parts, one
arising from terms of the form ar*"}, and the other from terms of
the form ¢(n) in the original serfes. Now since ¢{n) is of p
dimensions, the part arising from ¢ () will be zero in the (p + 1)
and succeeding orders of differences, and therefore these series
will be geometrical progressions whose cormnmon ratio is r.

[Art. 400.]
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Hence if the first fow ferms of a series are given, and if the
P order of differences of these terms form a geometrical pro-
gression whose common ratio is 7, then we may assame that the
general term of the given series is @™ 4 f(n), where f(n) is a
rational integral function of n of p—1 dimensions.

Example. Find the »'t term of the series
10, 23, 60, 169, 484,......
The suecessive orders of differences ara

13, 37, 109, 835,......
24, 72, 216,......

Thue the second order of differences is & geometrical progression in which
the common retio is 3; hence we may assume for the general term

U=t . 3""1+lm+c.

To determine the constanis e, b, ¢, make n equal to 1, 2, 3 successively;

then at+bre=10, 8a+2+c=23, Y2 +8b+ec=60;
whence : a=86, =1, ¢=3.
Thus Uy=6.3"T4+n4+3=2._8"+n+§

402, In each of the examples on recurring series that we
have just given, on forming the sueccessive orders of differences
we have obtained a series the law of which is obvicus on inspec-
tion, and we have thus been enabled to find a general expression
for the " term of the original series.

If, however, the recurring series is equal to the sum of &
number of geometrical progressions whose common ratios are
a, b, ¢, .., its general term is of the form Ao + BV '+ e,
and therefore the general term in the successive orders of
differences is of the same form ; that is, all the orders of differ-
ences follow the same law as the original series. In this case to
find the general term of the series we must have recourse to the
more general method explained in Chap. xxiv. But when the
coeflicients are large the scale of relation is not found without
considerable arithmetical labour; hence it is generslly worth
while to write down a few of the orders of differences to see
whether we shall arrive at a series the law of whose terms is
evident.

403. We add some exemples in further illustration of the
preceding principles,
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Ezample 1. Find the sum of n terms of the series

5 1. v 1.9 1 11 1
1.2°8 —2,3'32+m--§§+m-3;+.,.,..

a+3 1
Here Ty, = YR IRES
Arsumin i3 A B
& afntl] n ntl’
we find A=3, B=-1.
Henee u-—(g_.l_)i_j_‘ N 1
L R TS L
1 1
fi =1_.._. =
and therefore S.=1 T e

Example 2. ¥Yind the sum of & terme of the series

1,8 5 7
st rts sty oot
. 2n—-1
The nh )
entlemIs T En 5 @)
Zn -1 An+1)+B An+ B

Aseume e B @=]) "3.7...4n-1 3.7...@n"5
S 2a-l=Adn+ {4+ D)~ {dn+B) (dn-1).

On equating coefficients we have three equations involving the twa
anknowns 4 end B, snd cur assumption will be correct if values of 4 and B
cen be found to sabisdy all three.

Equating cosfficients of 17, we obtain 4=0.

Equsting the absclute terms, —1=28; that ia B=~§; and it will be
found that these values of 4 and B satisfy the third equation.

I SN SN S 1 .
CUnTE R T [An-B) 2°8.7.... (&n-5) (#n-1)
1 1 1
henoe LI R D & D 7 CPS )
Ezample 3. Sum ton terms the series
$.90+12.21420.37430.57T+42.81+......
By the method of Art. 396, or that of Art. 387, we find that the »* term
of the series 8, 12, 20, 30, 42,...... is m243n 42,

and the nth term of the series
9, 21, 37, 57, BL,......is 2n%4bn+ L.
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Henes tp=(n+1) {n+2) {22 (n+3)+1}
=2n(n+1) (n+2) (n+B)+n+1){n+2);

S,‘:;n mr+1)(rn+2) (m+3) {ﬂ+4]+%(ﬁ+l} (24+2) (n+3)-2.

Exzample 4. Find the sum of » termns of the series
2.246.4+12.8+20.16430.32+ ...
In the series 2, 6, 12, 20, 30, ...... the »*t term is #*+n;
hence g = (n* +n) 27,
Agsume (n®+4n) 20=(4dn?+Bn+ 012"~ {4 (n -1)*+ B (n- 1)+ C} 2¢1,
dividing out by 27~ and equating coefficients of like powers of n, we have
2=4, 2=24+B, 0=0-4+B;

whence A=2, R=-2% (O=4%
o= {30 - n+ 4) 2R - [2(n -1 -2 (1) 1 4} 271,
and Sﬂ=(2ﬂ"‘—2’n+4]2“~4={n9wﬂ+2)2"+1—-4.

EXAMPLES, < XXIX. bh.

Find the n? term and the sum of » terms of the seriea:

8, 26, 54, 92, 140, 198, ......
2, 12, 36, 80, 150, 252, ......
8 18, 0, —64, —200, —432,......

30, 144, 420, 960, 1890, 3360, ......

oo N

Find the generating functions of the series :
6. 1+8247at+182%+21aA+ 315+ ...
T. 14224 92242025+ 3524 - 5dad 4 ..
8. 24+50+102%+ 1723+ 2Bt +-3Tab 4+ ...
8 1-3r+5et- T8 494 —11a8+. ...

10, 14 4-2r+ 3% + 443 5541

Find the sum of the infinite series :

- 1.2 2.3 3.4 4.5
11, --3—--+-‘:3T+—§3—+“BT+ ......

o 22 a2 42 &2 62
12. 1 —'5+52.'-'g§+53—5‘5+ .....
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Find the general term and the sum of n terms of the series:

13.
14,

15.

18
17.

9, 16, 29, 54, 103,......

-3, -1, 11, 39, 89, 167,......
2, 5, 12, 31, 86,......

1,0, 1, 8 29, 80, 193,......
4, 13, 35, 94, 262, T56......

Find the sum of n terms of the series:

18.
18.

20.

21

22.
23.
24.

25,

26.

31

32.

142043224t ot

1432+ 622+ 102341528+ ...
3 1+ 4 1+_5_ 1, 8
1.2°9% 7 2.3°2273.47937 47,5798

2 2
_2_1.%'4-'-52._4' ’ 43:25' 54.6
3.44+8.11415.20+24.31 +35. 44+ ...
1.344.7+9.183+16.21425.314......
1.5+4+2.1543.31+4.53+5.81+......

1 8 .8 4
Tat13871.3 5.7 1.3.5.7.9

2.2 3.9 4.2
R
2.844.44+7.58+11.164-16.32+......
1.34+3.30+5. 354+ 7.354+8.85+......

1 . 1.3 _ 1.3.5 1.3.5.7
sate g etia e aTEaTéTeT 0

+
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404. There are many series the summation of which can he
brought under no general rule. In some cases a skilful modifi-
cation of the foregeing methods may be necessary ; in others it
will be found that the summation depends on the properties of
certain known expansions, such as those obtained by the Binomial,
Logarithmic, and Exponential Theorems.

Ezxample 1. Find the sum of the infinite geries
12 28 50 78

LI_I3

The ntt term of the series 2, 12, 28, 50, 78.... . is 8n¥+n —2; hence
_3frn-2 Bn{n-1l}44n-2 '

Ua = |2

=

- n-1

T =

W
2l

Put nequal to 1, 2, 3, 4,... In auecession ; then we have
4 2 3 4 2

u1=4-—£' =34 -y gm e -
[t LI, L2

and 8o on,

Whente S, =8¢+ 4e 2 (e I)=be+2.

Ezample 2. TF (L+z)*=¢, +eyz+ 6,2+ ... + c,2", find the value of
Loy +2%, 4 3%+ ... +nle,.
As in Art, 398 wa may sasily shew that

14254 0% 420 pplpnm1y o 1T
{L-zp

Algo ety @+ o™ e Th Tl p ot (1+zm.

Multiply togather these two resulin; then the _given series iz equal to

1
the coefficient of z*~! in I+ ": , that ig, in @~ 1z z)+Ht
- {T-2) Tz

The enly terms containing ™! in this expansion arise from

MR (L 23— (n+1) 2% (1 - z)—’+("11] P2 ot (1 gy

. the given series = ’—"-(ﬁ;-—ll anH

—n(ﬂ+1)2”+2(—’E-'—1)2ﬂ-1

=n(n41j2m-1



MISCELLANEOUS METHODS OF SUMMATION, 335

Ezample 3. Ifl=a+1, and n i3 a positive integer, find the value of

- {1 = 1) a2 +___M’l - 4 {E_M a3t
2 B
By the Binomial Theorem, we see that
P ooy (B2 (=S -B(n-3)
2 3 ’
are the coefficients of &%, am—2, gnd, gn-d

e in the expansions of (1 —x)1,

{t-zy~%, {1-2)=% (I-=z),...... respectively, Hence the sum required in
equal to the coefficient of 2™ in the expansion of the peries

1 ad® alzd alah .
1-bz Ll"b‘r)2+{l-bm)3-(l—bx}4+ ...... )

and although ihe given expression consists only of a finite number of terins,
this series may be coneidersd to extend to infinity.

. 1 az® 1
t th 1 = - : = -
But the sum of the series e (1 T bx) iz Taz
1 . ’
= ]-——[f:\"‘f:mg , Blnce b=a+l.
Henee the given series  =coefficlent of £™ In {ﬁ_xf%ljﬁ)
L @ 1
=coefficiont of 2" in o G 1__1)
antl -1
=21
Example 4. If the series
i "5+36 P A A
+ IG+ ...... . L4+l"’ ...... BYETR e

are denoted by a, b, ¢ respectively, shew that a®+ b3 +¢% — Babe=1L.
If » is an imaginary cube root of unity,

&+ 58408 dabo=(a+b+c) (a4 wb +wle) (o + D +ut)

3

Now a+b+c 1+x+.‘~:’+aﬁ x‘+r._+ ,,,,,,
CRRETETRTE

2 -2 w:l( 1_.1-5

and ppwbbuice b ws bt O OE

R T
=g 3
similacly at ot we=e"

. a4 B ot~ Babe=e". e“”.e”tm=e(l+w+m’)=

=1, since 1+ w+wi=0.
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405. To find the sum of the '™ powers of the first n nafurgl
numbers.

Let the sum be denoted by &,; then
S=1"+2+8+ .. +n"

Assume that

S =dmw +Aw+dn ™ 1A+ o+ dn+d (1),
where 4,, 4, 4,, 4,, ... are quantities whose values have to be
determined.

‘Write » + 1 in the place of # and subtract; thus

(o 1Y =4, ((n+ 1y =2+ 4 {n+ 1y ~a7} '
td i+ 1y 7 —w T A {1 T e (2.
Expa,nd (rn+ 1"y (n+ 1), (n+ 1), ... 'and equate the co-

efficients of like powers of . By equating the coeficients of »",
we have

1= 4, (r+1), so that 4, =

T+

By equating the coefficients of »™™", we have

"Ao('r-l-l)r
- 2

L\Dl -

+ A 7; whence 4, =
Equate the coefficients of » 7%, substitute for 4, and 4 .+ and
multiply both sides of the equation by

2 .
rir-Xr—2)...-p+1)’

we thus chtain

I=—1—~+]+A7’+A plp- AP(Phl)(?_2)+....(3).

P+l 2 (_1) 1) (-2

In (1) write % — 1 in the place of 7 and subtract; thus
=A™ — (=14 d (=14 T - (= 1))+ L
Equate the coefficients of #™~%, and substitute for 4, 4,; thus
— _
11 42 _ 4B 1)+A plp-L)(p=2) 4

=+

Tp+l 2 rir— Cplr=1)(r-2)
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From (3} and (4}, by addition and subtraction,
1 13’+ g 21 {p-9)

1
§*§_...1 - rkl)_'(';—") T {5).
r(p=1) 2= (p-2)(p-3)
0= 4 2B v 4, r(fﬁ})(r_g)(fﬁg)ﬂu cereene ().

By ascribing to p in succession the values 2, 4, 6, .., We see
from (6) that “each of the coefficients A, A4, 4., ... is equal
to zero; and from (5) we obtain

1 r b e =1y (r-3)
A=g i ATTee o
4 _}_ r{r—1){r— 2)(?——3){?-—4)
s 42" [6
By equating the absolute terms in (2), we obtain
l=d,+4 +4,+4,+ ... + 4,

and by putting n=1 in equation (1), we have
le=d +4 +4,+4,+...... +d,+4,,;
thus 4., =0

406. The resnlt of the preceding article is most conveniently
expressed by the formula,,
e+l 1
S, = +gn + Bp - B,

eyl L

+28

-]

rT (r—-1)¥{r— 2)
]4:
r{r—1) (fr.w 2)6(9" —3Y(r—4)

T,

where B, =}, B o=y, B2y, B, =gy, By=o5 ...
The quantities B , B,, B,, ... are known ag Bernoulli's Numbers;

for examples of their application to the summation of other series
the advanced student may consult Boole’s Finite Differences.

Ezample. Find the value of 15+ 254 8% 4 ..., s

né mt 5 5.4.8 ,
‘Wa have Sn-5 7 Blrgn - By —3 nt+C,

AP . i

=gtitm T

the constant being zero,
H. H. A 22
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EXAMPLES. XXIX. c

Find the sum of the following series:

1.

10,

11,

12.

13.

14

(1) 184+92854-364+...... + a8 @y 17427434

22 .2:5 &7 i a a®
3rETE T 2 rztaateat
L& 2 ]2 L%
&TE+‘L§+ ...... 4, —"+Ir+1+-llr+2+ """
921 a2 321 43 #-1 2
R S AT R
P’f—l g pr—‘.é i: Pr-:i g&_"‘ ]
L '1+1”'_'_2'L?+1?'—3'L§' ...... to 7+ 1 terms,
n{l+z) n»n-1) 1+2¢
1+nx '2 ‘(A Fnz)
a{n-1¥n—-2) 143
+ ( é( ) a +“:)-3 —ien to = terms.
2nd1 _ /29n41)2
1 3*9'1—1"-’:1‘}"0(@%-1 F s to 7 termsa,
nt nd(n?=12)  wd (- 1%)(n? - 22
l_ﬁ TR T 22{32 } ...... to n+1 terms.
{1+2) log,2+ (1og,2)2 L (log, AL
1 1 1
NI W T Al
3,36 1 18
l—l 2 @ E "E—+ ..... -
ar? 2 Tad 238 12128
1 L T
TERTETE TR

‘Without assuming the formula, find the sum of the serfes:



SUMMATION OF SERIES. 339

15. Fiud the sum of 13+ 3+ + 53 ......
2 L
16. Shew that the coefficient of & in the expansion of 1—5-2—_-;;: ig
- 2_
gt DO O L
17. If nis a positive integer, find the value of
-1yt {n~2)(n-3) gnet_ {(n—3){n—4)(n-5) gnog . ,

2 B
and if # is a multiple of 3, shew that
(=2(B-3) _(n—3)(a—4)(n=5)
2 2
18, If n is a positive intager greater than 3, shew that
n{n—1) 2 4 nin—1}n—2)(n-3) (-4t

ETE L

1-(n—1)+ Forr={=T)n,

=w*{n+3) 2",
19, Find the sum of » terms of the series :
O T A
TR TR WGy Sl e
5 3 9 7 i3 11 17
@ 13 53752 75756 67778
(=1yHig
nint 1) (n+2)

20, Sum to infinity the series whose nt® term is

21, If l4ar=cuteorteaitor®+ ... +c,,'x“, » being a positive
integer, find the value of

{n—1Y%, +{n—3)Tey+{n—5fcg+......

29 Yind the sum of n terms of the series:
9 8 16 39
0 1575, 7+7 T 15,31 3. 65
v 17 31 49 71
@ g3 a3 et AT T 5.6 5.6.7

93, Drove that, if a~1, (1+u2)(2 +a®}(l+a’s)......
Gz alat alz?
R D R Yy g S R T T R
22-—2
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24. If 4, is the coefficient of 4" in the expansion of

(142} (1 +‘§?’)2(1 + é)(l +§;)2 ...... ,

9! 1072
prove that A= 5 (A + 4,4}, and d,= 375 -

35. If#nis a multiple of §, shew that each of the series

_41(?.:—-1}(?:-—2).3_!_ ﬁ(n—l)(nhﬂ)(n—3)(-!&-—4)‘32__

E 3 F e ;
n{n—1)r-2) 1 an-1}n-29{n-3n-4 1
- 1_3 .§+ EE "3-2- ...... +

1y equal to zero.

#

26. If = is a positive integer, shew that
-2} (w3
(p+gr ==V pa(par 2+ "I g (prgyie .

mrl _ ndl
i3 equal to ?____:_Q____ .

27, If P=(n—-r){n—-r+1)(n—r+2).....(a-r+p-1},
o=r{r+ ) {r+2)a. r+q-1) '
shew that
plgln—14+ptq
P+ P8y + Pylst ... + Ly G = L| P!+‘£E-I-:1-|n_:2‘ ;
28, If » is a multiple of 3, shew that
n-3 (m-4)(n-5) (a-5){rn-6)(n-T)
1- -5 + L‘? E Foiens
e (n—r—L(n-r~2). (n—2r+1) n

. 3 1 . .
is equal to SO, according asg = is odd or even,

+(

29, If # is a proper fraction, shew that
x a8 2t x 2° 28
To@ (o T iogo ™Sty patriget



CHAPTER XXX,

THEORY OF NUMBERS.

407. In this chapter we shall use the word number as equi-
valent In meaning to positive integer.

A npumber whicl is not exactly divisible by any number
except itself and unity is called a prime number, or a prime; a
number which is divisible by other numbers besides itself and
unity is called a composite nuwmber; thus 53 is a prime number,
and 35 is a composite number. Two numbers which have no
‘common factor except unity are said to be prime to each other;
thus 24 is prime to 77,

408. 'We shall make frequent use of the following elementary
propositions, some of which arise so naturally out of the definition
of & prime that they may be regarded as axioms.

(i) If o number o divides a product ds and is prime to one
factor b, it must divide the other factor ¢.

For since o divides be, every factor of @ is found in be; but
since a is prime to b, no factor of & is found in &; therefore all
the factors of ¢ are found in ¢; that is, o divides e

(it} If & prime number e divides a product ded..., it must
divide one of the factors of that product; and therefore if a
prime number ¢ divides }", whers n is any positive integer, it
must divide b.

(iit) If @ is prime to esch of the numbers b and ¢, it is prime
to the product be. For no factor of & can divide & ar ¢; there-
fore the product be iz not divisible by any factor of a, that i, o
is prime to be. Conversely if ¢ is prime to be, it is prime to each
of the numbers & and e

Also if @ is prime to each of the numbers b, ¢, 4, .., it Is

prime to the product bed... ; and conversely if a is prime to any
number, it is prime to every factor of that number.
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(ivi If @ and & are prime to each other, every positive
integral power of & is prime fo every positive integral power of &.
This follows at once from (iii).

"

(v} If a is prime to b, the fractions g and %‘ are in their

. e o G
lowest terms, » and m being any positive integers. Also if 3 and
¢ . @, .

7 bre any two equal iractions, and jisin its lowest terms, then

¢ and d must be equimultiples of @ and b respectively.

409. The number of primes is infinite,

For if not, let p be the greatest prime number; then the
product 2.3.5.7.11...p, in which cach factor is a prime num-
ber, is divisible by each of the factors 2, 3, 5,...p; and therefore
the number formed by adding unity to their product is not
divisible by any of these factors; hence it is either a prime
number itself or is divisible by some prime number greater than
p: in either case p is not the greafest prime number, and there-
fore the number of primes iz not limited.

410, No rational algedraical formula cam represent prime
numbsrs only.

If possible, let the formula a+ bx + cx®+do® + ... represent
prime numbers only, and suppose that when x=m the value of
the expression is_p, so that

p=atbmtend® +dm®+ ...
when = m + np the expression hecomes
w+bim+np+e(m+np) +dm+np)+ ...,

that is, @ +bm+oem®+ dm”+ .., + & multiple of p,
or 2+ a multiple of p,
thus the expression is divisible by », and is therefore not a prime
number.

411. A number com be resolved into prime faclors in only one
Wy,

Let & denote the number; suppose N =abed..., where

e, b, ¢, d, ... are prime numbers. Suppose also that N =afy8..,
where a, 8, y, &, ... are other prime numbers, Then

abed. .. =aflyd... ;
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hence a must divide abed... ; but each of the factors of this pro-
duct is a prime, therefore « must divide one of them, ¢ suppose.
But « and « are both prime; therefore « must be equal to @,
Hence bed...=8y8...; and as before, 8 must be equal to one of the
factors of bed...; and so on. Hence the factors in ofyd... are
equal to those in abed..., and therefore A7 ean only be resolved
into prime factors in one way.

412, To find the number of divisors of a composite number,

Let & denote the number, and suppose N=a'¥c"..., where
a, b, ¢, ... are different prime numbers and 'p, ¢, 7, ... are positive
integers. Then it is clear that each term of the product
Q+a+e’+. . +aV(L+0+8+ .+ (1 +ec+cf+.. +)..

is a divisor of the given number, and that no cther number is 2
divisor ; hence the number of divisors is the number of terms in
the product, that is,

(p+D{g+D{r+1)......
This includes as divisors, both unity and the number itself.

418. To find the number of ways in whick a compogite number
can be resolved inio two factors.

Let N denote the number, and suppose N =a"b'c ..., where
a, b, c... are different prime numbers and p, ¢, 7... are positive
integers. Then each term of the product

(lia+ra'+ ..+a@)(L+o+ 8+ ...+ (1+c+e’+... +0)...

iz & divisor of &; but there are fwe divisors corresponding to
each way in which & can be reselved into twe factors; hence the
required number is

é(p—kl) {g+1}(r+1).....

This supposes ¥V not a perfect squars, so that one nt least of the
guantities g, ¢, 7, ... i3 an odd nwnber.

If ¥ is a perfect square, one way of resolution into factors
is /N x /¥, and to this way thers corresponds only one divisor
J. Tf we exclude this, the number of ways of resolution is

%{(?H Ly(g+1){r+1) .. —1},

and to this we must add the one way JN x /A; thus we obtain
for the required number

é{(pn)(qu)(ﬁ 1)... +1}.
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414, To find the number of woys in which ¢ composile
number can be resolved info fwo faclors which are prime to ench
other.

As before, let the number ¥ =o"b%¢".... Of the two factors
one must contain ¢f, for otherwise there would be some power of
@ in one factor and some power of @ in the other factor, and thus
the two factors would not be prime to each other. Similarly &
must occur in one of the factors only; and so on. Hence the
required number is equal to the number of ways in which the
product abe... can be resolved into two factors; that is, the

number of ways is %(1 + L+ 13 (1 +1)... or 2774 where = is

the number of different prime factors in V.

415. o find the sum of the divisors of a number.

Let the number be denoted by a’b%¢"..., as before. Then each
term of the product
(1+a+£+.“+&ﬂl+b+y+.n+ﬁﬂl+c+€+]”+dy“
is a divisor, and therefore the sum of the divisors is equal to this
product ; that is,

th . d_a'PH_l by‘H_-l cv-+1_1
esumr&qmre = a-—-l . Fo1 . G-‘-'].

Ezample 1. Consider the number 21600.
Bince 21600=65,102=23 .83 . 9 53=2%, 89, 5%,
the number of divisora= {5+ 1){8+1} (2+1)=72;
#$-1 §-1 §-1

FIT BT BT
=68 x 40x 81
=T78120.

Algo 21800 can be resolved into two factors prime to emoh other in 27,
or 4 ways.

the sum of the divisora=

Example 2. If nis odd shew that n (n*-1) is divisible by 24.
We have aln? ~=an-1){n+1).

Since n 18 odd, n—1 and %+ 1 are 1wo consecutiva evan numbera; hence
one of them is divisible by 2 and the other by 4.

Again n-1, n, n+1 are three consecutive numbers; hence one of them
is divieible by 3. Thus the given expression is divisible by the product of 2,
3, and 4, that is, by 24,
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Egample 3. ' Find the highest power of 3 which is eontained in |100.

Of the firat 100 integers, as many are divisible by 3 as the number of
times that 3 is contained in 100, that 18, 33 ; and the integers are 3, £,9,...99.
Of these, some contain the factor 3 again, namely 9, 18, 27,...99, and their
number is the gquoiient of 100 divided by 9. Somne agein of these last
integera contain the factor 3 a third time, namely 27, 54, 81, the number of
them heing the quotient of 100 by 27. One number only, 81, contains the
factor 3 four times.

Henece the highest power required =383+ 1143+ 1=48

This example is & particular cage of the theorem investigated in the next
article.

416.  To find the highest power of o prime nuwmber a which 1a
contained in .

n on n

Let the greatest integer contained in i L R respectively

be denoted by I z s £ 3, , £ -?i; ,+.. Thenamong thenumbers
a &€ @& g

1,2, 3, ... »n, there are J (2) which contain @ at least once, namely

the numbers a, 2a, 3a, 4a, ... Similarly thers are J (-z;) which

contain af at least once, and J (E:;*) which contain &® at least once;

and so on. Hence the highest power of @ contained in n is

@)1 (3)er(3)

417. In the remainder of this chapter we shall find it con-
venient to express a multiple of n by the symbol 3 (n).

£18, To prove that the product ¢f r comsecutive indegers is
divisible by |r.

Let P_stand for the product of r consecutive integers, the
least of which is n ; then :

P=nn+l)(n+2) .. {n+r-1)
and P, =+l (n+2(n+3) . (ntr);
-~ nP =+ P =aP +rP;

R S o =ix‘r

H+1 Ll 2%

= # times the product of » — 1 consecutive integers.
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Hence if the product of +—1 consecutive integers is divisible by
|7 =1, we have

1 Pn :TM(E____I_)
=M ().

Now P, = |r, and therefore P, is a multiple of |r; therefore
also P, P, ... are multiplesof |». 'We have thus proved that if
the product of »—1 consecutive integers is divisible by |r -1, the
product of r consecutive integers is divisible by |r; but the
product of every two consecutive integers is divisible by |2;

therefore the product of every three consecutive infegers is divisible
by |3; and so on generally.

This proposition may also be proved thus:

By means of Art. 416, we can shew that every prims factor
is contained in |» + 7 as often af least 23 it is contained in [ |r.

This we leave as an exercise to the student.

419. If p s a prime number, the coegfficient of every term in
the expansion of (a+ b)?, except the first and last, is divisible by p.

With the exception of the first and last, every term has a co-
efficient of the form

plp~L(p-2..(p-r+1)
L?: 1

where r may have any integral value not exceeding p—1. Now
this expression is aninteger; also since p is prims no factor of {7
is a divisor of it, and since p is greater than 7 it cannot divide
any factor of |r; that is, (p—1)(p—2)... (2 - r+ 1) must be
divisible by j». Hence every coefficient except the first and
the last is divisible by ».

420.  If p iz a prime sumbsr, to prove that
(a+b+c+ d+....)1’ma1‘+ bP e+ dP+ ..+ M{p).
Write 8 for b+¢+...; then by the preceding article
{a+BY =a"+ B+ M(p).
Again Pab+crd+ .. ) ={b+y) suppose;
=+ 4"+ M (p).

By proceeding in this way we may establish the required result.
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421. [Fermat’s Theorem.] IF p is a prime number and N is
prime to p, then Nv"' — 1 s & multiple of p,

We have proved that

(@+b+ctd+ .  F=a"+ ¥+ +d+ ...+ M (p);
let each of the quantities @, b, ¢, d, ... be equal to unity, and sup-
pose they are ¥ in number; then
Nt =N+ M (p) 5

that is, N (N~ = 1)=H (p).
But ¥ is prime to p, and therefore 7' — 1 is a multiple of p.

Cor. Since p is prime, p — 1 is an even number except when
p=2, Therefore

#-1 2ol
W=+ D F -1)=H(p).
, -l 2-1
Hence either ¥ % + 1 or ¥ % —1 is a multiple of 3,

. ) : cer o x
that is ¥ T = Kp=+1, where X is some positive integer.

422, Tt should be noticed that in the course of Art. 421 it
was shewn that N7 — N = M (p) whether N iz prime to p or not ;
this result is sometimes more nseful than Fermat’s theorem.

Ezxample 1. Shew that #7 —n is divigible by 42,
Hince 7 is & prime, nl —n=M{T};

also W wn=n {10 j=nn+1}{n- 1) nt+nd+ 1}

Now (n—1)n (n+1) is divisible by |3; hence n” —» ia divisible by 6% 7, or 42,
Ezample 2. If pis a prime number, shew that the difference of the p*

powers of any two numbers exceeds the difference of the numbers by o
maultiple of p.

Let 2, ¥ be the numbera; then
z?—z=M(p) and y?-y=M(p),
that is, wP - y? -~ (z - y) =M {p);
whence we obtain the required resnlt.

Ezample 3. Prove thiat every square number is of the form bn or Sn1,

If N is not prime o 5, we have N?=25n where » i some positive integer,
If N ia prime to 5 then N+—1 ia s multiple of § by Fermat's theorem; thus
either N3~ 1 or ¥34+1 is & multiple of 5; that i, N2=5n=1.
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EXAMPLES. XXX a.
1, Find the lenst multipliers of the numbers
3675, 4374, 18375, 74088
respectively, which will make the prodncts perfect squares.

2 Find the least multipliers of the numbers
7693, 109350, 539539
respectively, which will make the produets perfect cubes.

8. If z and ¥ are positive integers, and if x—y is even, shew that
#% — % is divisible by 4,

4, Shew that the difference between auy number and its square
is even.

§. If 42 —y is a multiple of 3, shew that 4a%+ 72y — 22 is divisible
by 9.

8. Find the number of divisora of 8064.

7. In how many ways can the number 7056 be resolved into
two factors ?

8. Prove that 2% —1 is divisible by 15.
9. Prove that »{(n-+1) (n+5) is & multipls of 6.

10, Shew that every number and its cube when divided by 6 leave
the same remainder.

11. If »is even, shew that » (n2+20) is divirible by 48,
12. Shew that » (n?—1) {(3n+ 2} is divisible Ly 24.

13. If » is greater than 2, show that nf-—-Dbn¥+4n is divisible by
120.

14. Prove that 3% 47 is o raultiple of 8.

15, If n is a prime number greater than 3, shew that w31 is
a multiple of 24, :

16. Shew that 28 —n ig divigible by 30 for all values of », and by
240 if » is odd.

17. Shew that the difference of the squares of any two prime
nunrbers greater than 6 ia divisible by 24,

18. Shew that no square number is of the form 3z - 1.

19. Shew that every cube number iz of the form 9z or 9r %1,
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20. Shew that if a cube number is divided by 7, the remainder
is 0, 1 or 6.

21. If a number is both square and cube, shew that it is of the
form Tn or Tn+1.

22. Shew that no triangular number can be of the form 3n—1.

23. H 2n+41 is a prime number, shew that 1% 2%, 3%...»% when
divided by 2n+1 leave different remainders.

24. Shew that ¢ +a and o*—« are always even, whatever @ and =
may be.

25. Prove that every even power of every odd pumber is of the
form &r--1.

26. Prove that the 12" power of any number is of the form 13»
or 13n+1.

27. Prove that the 8% power of any number is of the form 17n
or 17Tn<1.

28. If n is a prime number greater than 5, shew that 2f-1 is
divisible by 240

29. If m is any prime number greater than 3, except 7, shew that
-1 ig divigible by 168.

30. Show that #* — 1 is divisible by 33744 if = is prime to 2, 3, 19
and 37.

3l. When p+1 and 2p+1 are both prime pumbers, shew that
2% -1 is divisible by 8(p+1)(2p+1), if # i{s prime to 2, p+1, and
2p+1.

32. If p is & prime, and x prime to p, shew that g
divisible by p*.

~1lis

33, If m is a prime nuwmber, and «, b two numbers less than m,
prove that
am—2+am--.’ib_l_a'm-—-lbﬁ,{_‘_____+bm~ﬂ

is o multiple of m,

493. 1f @ is any number, then any other number V may
be expressed in the form N =ag+r, where ¢ is the integral
quotient when ¥ is divided by @, and » is & remainder less than a.
The number ¢, to which the other is referred, is sometimes called
the moduhes; and to any given modulus a there are o different
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Sforms of a number ¥, each form corresponding to a different
value of + Thus to modulus 3, we have numbers of the form
3¢, 3¢+1, 3¢+2; or, more simply, 3¢, 3¢+1, since 3g+2 is
equal to 3 {¢+1)-1. In like manner to modulus 5 any number
will be one of the five forms bg, By=1, bg= 2.

424, If b, ¢ are two integers, which when divided by «
leave the same remainder, they are said to be congruent with
respect to the modulus @. In this case b ~ ¢ is a multiple of g, and
following the notation of Gauss we shall sometimes express this
as follows:

b= ¢ (mod. @), or &—c= 0 (mod. a).

Fither of these formula is called a congruence,

425, If b, ¢ are congruent with respect to modulus a, then
b and pc are congruent, p being any integer.

For, by supposition, & -c=na, where n is some integer;

therefore pb —pe = pna ; which proves the proposition.

426, If & is prime fo b, and the quantities

are divided by b, the remainders are all different.

For if possible, suppose that two of the quantities ma and
m'e when divided by b leave the same remainder r, so that

ma=gh+r, ma=¢b+r;
then (m—m)a=(g—g¢})b;

therefore & divides (m— m’) @; hence it must divide m — o', since
it is prime to & ; but this 15 impossible since m and ' are each
less than &.

Thus the remainders are all different, and since none of the
quantities is exactly divisible by &, the remainders must be the
terms of the series 1, 2, 3, ._.... 5 — 1, but not necessarily in this
order.

Cor. If & is prime to &, and ¢ is any number, the & terms
of the a.p.

¢ c+ay, o+ 2a, ..., e+ {b-1)a,
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when divided by & will leave the same remainders as the terms
of the series

e, e+l e+ 3 L e+ (b~ 1),
though not necessarily in this order; and therefore the re-
mainders will be 0, 1, 2, ...... 5-1.

427, If' b, by, by, ... arerespectively congruentto ¢, ¢,, ¢, ...
with regard o modulus a, then the products bbb, ..., cee, ...
are also congruent,

For by supposition,

by—¢, =ng, b-~c=na b-c=ng ..

where n,, n, %, ...

are integers;
cobbh, L =(e ) (o +na) (e, +na) .
=666, . + M (e},

which proves the proposition.

428, Wo can now give another proof of Fermat’s Theorem,

If p be o prime number and N prime lo p, then Nv7'—1 4
a muitiple of p.

Since & and p are prime to each other, the numbers

N, 2N, 3N, ... (p-1 N {1},
when divided by p leave the remainders
1,3 3 ... (P—1) oo (3,

though not necessarily in this order. Therefore the product of
all the terms in (1) is congruent to the product of all the terms
in (2},  being the medulus.

That is, {p—1 X7  and [p - | leave the same remainder when

divided by p; hence
w1 (@@ -1)=M(p);
bub [p-1 is prime to p; therefore it follows that
N 1 =M (p).

429, 'We shall denote the number of integers less than a
aumber a and prime to it by the symbol ¢ (a); thus ¢{2}=1;
¢ (13) = 12; ¢ (18) =6 ; the integers less than 18 and prime to

it being 1, 5, 7, 11, 13, 17. It will be seen that we here
consider unity as prime to all numbers.
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430, To shew that if the numbers a, b, ¢, d, ... are prime lp

sach other,
plabed...)=q{a). ¢(b). b {c)....

Consider the product ad’; then the first @b numbers can be
written in & lines, each line containing & numbers ; thus

1, 2, ... koo e,
e+ 1, a+3, ... a+k ... .. @ + @,
26+ 1, Sa+2, ... Qo+l ... 2a +a,

B—-De+l, (b~-1)a+2, ... d~Da+k ... (-1 a+a

Tet us consider the vertical ecolumn which begins with %; if
% is prime to @ all the terms of this column will be prime to a;
but if £ and o have a common divisor, no number in the column
will be prime to @. Now the first row contains ¢ (a) numbers
prime to a; therefore there are ¢ (a) vertical ecolumns in each
of which every term is prime to @; let us suppose that the
vertical column which begins with & is one of these. This column
is an A.P., the terms of which when divided by b leave remainders
0, 1, 3,3, ...b~1 [Arxt. 426 Cor.]; hence the column contains
¢ (b) integers prime to .

Similarly, each of the ¢ (@) vertical columns in which every
term is prime to & contain ¢ (b) integers prime to & ; hence in the
table there are ¢ {a).< (b) integers which are prime to & and
also to b, and therefore to ab; that is

b (@)= (a). $ ).
Therefore ¢ (abed ...} = ¢ (a) . ¢ (bed ...}
=¢ (). 6 (). pled ...}
=4 (0. BB (). (@) ...
431, To find the number of positive infegers less than a
given number, and prims to it.

Let ¥ denote the number, sud suppose that N--a?é'c” ...,
where a4, b, ¢, ... are different prime numbers, and p, q T ..
positive integers. Consider the factor a”; of the natural num-
bers 1, 2, 8, ... a*— 1, &, the only ones not prime to @ are

a, 2a, 3a, ... ("'~ 1)a, (@ Vg,
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and the number of these is "' ; hence
@Y= - '=a" (1 - ~*> .

&
ars prime to each other;

Now all the factors &', ¥, ¢,

¢ (&b ...} =¢(a"}. (V). o ()
=a”(1 -é bf(1~—) (1 --)

- W (1 "51;) (1 -5) (1 -2
¢{N)=.N(1 —2) (1 &%) (1 -%)

that is,
Shew that the sum of all the integers which are less than N

Example.
end prime o it is §.¥ ¢ (N}
If = is any integer less than N and prime to if, then N -z is also an
integer less than N and prime to it
Denote the integers by 1, p, ¢, 7,..., and their pum by §; then
S=l+prg+r+. +(N-)+{N-g)+{N-p}+(N-1)},

the series consisting of ¢ {N} terms,
Writing the geries in the reverae order,
(F-m+...+r+g+p+1;

S=(N-1+(N-p)+(N-g)+
. by addition, 2§=N+ N+ N+ ... to ¢ (¥N) terms;
. S=kN (N

From the last article it follows. that the number of

432,
integers which are less than ¥ and not prlme to it is
)

N N(l -z
a
that is,
yy x¥ ¥ F¥F¥ X
a TS ab  ac be taket
Hers the term % gives the number of the integers
N
a, 2a, 3a, ... — 4
which contain e as a factor; the term % gives the number of
23

H. H. A
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-

the integers ab, 2ab, 3ab, ... i ab, which contain ab as s factor,

and se on. Further, every integer is reckoned once, and once

only ; thus, each multiple of b will appear once among the

multiples of ¢, once among the multiples of 3, and once negatively

among the multiples of ad, and is thus reckoned once only.
: N

Again, each multiple of wle will appear among the i—, .Z_g_”, i::

terms which are multiples of @, b, ¢ respectively; among the

yor lf terms which are multiples of ab, ac, be respectively;
ab’ ac’ be

and among the —‘;g—;- multiples of abc; that is, since 3-3+1=1,

each multiple of abe occurs once, and once only. Similarly, other
cases may be discussed.

433, [Wilson’s Theorem.] If p be ¢ prime number, 1 + 1 p-1
¢ diwigible by D
By Ex. 2, Avt, 314 we have

p-l=(p-1)""~(p- 1) (p=2y""+ (&‘,%Pﬁ) {p —‘3)”"

_(“P-i)(Plg2)(?3‘"3)(p_@,—l+

... to p—1 terma;

and by Fermat’s Theorermn esch of the expressions (p- 1),
(p—2¢~" {(p—3y7", ... is of the form 1 + M (p); thus

lp—1= M () + {1 ~(p-1)+ (i*_%(‘zi"_ﬁ)_ top-1 terms}
= (p)+ (1= 17 ~ (- 1
=M{p)-1, since p~1 is even,

Therefore 1 + [p-1 :M(p).

This theorem is only true when p is prime. For suppose p
has a factor ¢; then g is less than p and must divide iz —1; hence

1+}p+1is not & multiple of ¢, and therefore not 2 multiple of p.

Wilson’s Theorem may elso be proved without using the
result quoted from Art 314, as in the following article.
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434. [Wilson's Theorem.] If p be a prime number, 1+ [p-—- 1
s divisible by p,
Tet o denocte any one of the numbers

1,2, 3, 4 .. {p=-1y ..ol {n,
then @ is prime to p, and if the produsts
l.a 2.4 3.a ... (r—Va

are divided by p, one and only one of them leaves the re-
mainder 1. [Art. 426.]

TLet this be the product ma; then we can shew that the
numbers m and o are different unless a=p—1 or 1. For if o
were to give remainder 1 on division by p, we should have

a*—=1=0 (mod. p),
and since p is prime, this can only be the case when a+ 1 =p,
or a— 1=0; that is, when a=p~1 or 1. '

Hence one and only one of the products 2a, 3¢, ... (p-2)a
gives remainder 1 when divided by p; that is, for any one of the
geries of numbers in (I}, exeluding the first and last, it is
possible to find one other, such that the product of the pair is of
the form ¥ (p} + 1.

Therefore the integers 2, 3, 4, ... (p~2), the number of
which is even, can be agsociated in pairs such that the product of
each pair is of the form M (p} + 1.

Therefors by muitiplying all these pairs together, we have
2.3.4 . {(p-D=M(p)+1;
that is, 1.2.3.4 ... (p=-1)=(p-1{#M(p)+1};
whenece lp—1=M(p)+p—1;
or 1+|p—1 is a multiple of p.

Cor. If 2p+1 is a prime number (}g)'-l— (- 1) is divisible
by 2p + 1.
For by Wilson’s Theorem 1 +|2p is divisible by 2p+ 1. Pat
n=2%+ 1, sothat p+1=n—p; then
|2p=1.2.3.4...... plp+D{p+2)..... {n—-1)
=1{n—-1)2(n~2)3(n-3) ... p(n-p)
= a multiple of n+ (- 1)* ([p)*
Therefore 1 +(— 1) {|p)* is divisible by # or 2p +1, and
therefore ([p)*+ (— 1) is divisible by 2p+ 1. :
23—2
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435. Many theorems relating to the properties of numbers
cun be proved by induction.
Example 1. If pis a prime number, 2® - 2 is @ivisible by p.
Lot xP— z be denoted by f(z}; then
FlorD~f () =(z+1P - o+ 1) - (@7 -2)

=par~i +'E—§—_E~;—I;) P2 px

=g multiple of g, If p is prime [Art. 419,]
<. Flz+1)=F{z)+a multiple of p.
If therefore f {x) is divisible by p, so also ia f{z +-1); but
Fi2y=20 -2={l4+1p -2,

and this is s multiple of  when pis prime (Ari. 419]; therefore f(3) is divisibla
by p, thevefore f{4) is divisible by g, and so on; thus the proposition is {rue
universally.

This furnishes another proot of Fermat's theorem, for if « is prime to p,
it follows that z#~1— 1 is a multiple of p.

Ezemple 2. Prove that 5212 — 24n — 25 is divisible by 576.
Tiet 5342 — 24 — 95 bae dencted by F(n);
then Firyl)y=5n_24(n+1)-25
=525 94 . 49
oo F (1) - 25 f () =25 (24n + 25) ~ 24n — 49
=576 (n+1).

Therefore if f(n} is divisible by 576, so also is f(n+1}; bub by trial we
ses that the theorem is true when =1, therefore it is true whesn n:==2, there-
fore it ia trne when n=23, and so on; thus it is true universally.

The abova result may also be proved as follows:
a2 Dm - 25 =257 - 24n - 25
=26 (1 +24)" - %4n - 26
=254+ 25.m .24+ A (249) - 2dn - 26
=5T6n + M (576)
= M (576,

EXAMPLES. XXX, b

Shew thut 10* 43, 47+24-5 i3 divisible by 9.
Shew that 2,74 8. 56*—5 is a multiple of 24.
Shew that 4. 6"+ 5%+ when divided by 20 leaves remainder 9.

g e

Shew that 8. 7"+ 472 ia of the form 24 (2r - 1),
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5. If pis prime, shew that 2 |{#—8+1 is a multiple of p.
6. Shew that a®+1—g is divisible by 30.

7. Shew that the highest power of 2 cuntained in [2/-1 is
2-r-1

.8, Shew that 3t +24- 501 jg a multiple of 14.
9. Shew that 3541600 — 56n - 243 is divisible by 512,

10. Prove that the sum of the coeflicients of the odd powers of 2
in the expansion of {1+x+2*+2%+ 29", when n is & prime number
other than &, is divisible by =.

11. If = is a prime number greater than 7, shew that #%—1 is
divisible by 504.

12, If = is an odd number, prove that w34+ 3ns4+7n2-11 in a
multiple of 128,

13. If p is a prime number, shew that the coefficients of the terms
of (142171 are alternatsly greater and less by unity than seme mul-
tiple of p.

14. If p is a prime, shew that the sum of the {(p—1)* powers of
any p numbers in arithmetical progression, wherein the common differ-
ence i3 not divisible by p, is less by 1 than a multiple of p.

15. Shew that & 0% is divisible by 91, if ¢ and b are both prime
to 91.

16. If p is & prime, shew that |p—2r |2r—1 -1 is divisible by p.

17. If n—1, n+1 are both prime numbers greater thau 5, shew
that m(n?®—4) is divisible by 120, and =®(#®+186) by 720. Alsc shew
that # must be of the form 30¢ or 302412,

18. Shew that the highest power of » which is contained in [ar-1

' wr—nrtr-1
is equal to =
19, If p iz a prime number, and ¢ prime to {), and if a square
number ¢ can be found such thet ¢®—« is divisible by p, shew that
-1

& "1 is divisible by .

20, Find the general solution of the congruence
98¢~ 1 =0 (mod. 138).
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91, Shew that the sum of the aquares of all the numbers less than
& given number & and prime to it is

{Ya_a(l_i) (l_é)o_l ‘___+fg(1—a)(l—b)(l—-c}...,

{

and the sum of the cubes is

26 —f;) (Iwé) (1_§),..,+“’;(1—@(1—6}(1—-9}..., '

a, b, ¢... being the different prime factors of V.

22. If p and ¢ are any two positive integers, shew that )pg is
divisitle by (|p)¢. (g and by (jg)?- 2. )

23. Shew that fhe square numbers which are also triangular are
given by the squares of the coefficients of the powers of x in the ex-

pansion of and that the square numbers which are also

1-—6x4zt’

pentagonal by the coefficients of the powers of # in the expansion of
e

- T0z+a2"

24. Shew that the sum of the fourth powers of all the numbers
loss than & and prime fo it is

r (u(l;) (1—16> (1-%)_.,..4-’1‘_;—3 (1=a) (1 =B) (L =b)...

N
_ (1 —a® (1 = —
- - B -,
a, b, ¢,... being the different prime factors of ¥,

25, If ¢(N)is the number of integers which are less than & and
primee fo it, and if x is prime to &, shew that

% _ 120 (mod. M.

26. If 4, d, dy, ... denote the divisors of a nureber ¥, then

$ () +6 () + b {dg)+.= V.
Shew also that

B T =90 T 9 O) i - ad inf =T )

A+



* CHAPTER XXXI.

Tur GENERAL THEORY OF CONTINUED FRACTIONS.

#436. In Chap. Xxv. we have investigated the properties of
1

Continued Fractions of the form ¢, + — ——.

'a,+ e+
are positive integers, and o, is either a positive integer or zero.
We shall now consider continued fractions of a more general
type

..y where o, a,,...

*#437. The most general form of a continued fraction iz

b b

ax; E_s; a,:* ...... y where g, @,, a,, ..., b, b, &,, ... represent
T

any quantities whatever.
\ . & b, B,
The fractions =, 2, -2, ... are called components of the

1 “ﬂ @
continued fraction. We shall confine our attention to two cases;
(i) that in which the sign before each component is positive;
(i1) that in which the sign is negative.

%438,  To envestigate the low of formation of the swccessive
convergents Lo the continued froction

b b b

The first three convergents are

b, _ab a,.a,b, +6,.5,
o,  aa+d’ e (eat+b)+d.a
We see that the numerator of the third convergent may be
formed by multiplying the numerator of the second convergent by
a,, and the numerator of the first by b, and adding the results
together; also that the denominator may be formed in like
manner.
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Suppose that the successive convergents are formed in a
similar way ; let the numerators be denoted by p,, p,, »,-
and the denominators by ¢,, §ur Fs -+

Assume that the law of formation holds for the " con-
vergent ; that is, suppose

2o Py s O Py D=0 F Uy
The (n+ 1} convergent differs from the n% only in having

&,y
a, + ~**1in the place of & ; hence
a
a+l

the (n+ 1)t convergent

bn+1
a’l p"_ = n"-IP + bn-{-]?’!‘—l

n+!.g + blﬂ-t =1

(a" + bﬂ"‘l) pu—'] +bnpn—-2 pﬂ
a'n-i-l —

) 5.,
(ﬂ«,.+ -ﬁﬂ) P N

et d L3

If therefore we put

puﬂ = a’nﬂpn -+ bnﬂpn—l’ qn-&-l 5 alaflqn+ 6n+1gn-1?

we see that the numerator and denominator of the (% + 1)™ con-
vergent follow the law which was supposed to hold in case of the
a%, But the law does hold in the case of the third convergent;
hence it holds for the fourth; and sc on; therefore it holds
universally.

*£30, In the case of the continued fraction
bl

o — I."I!-9

we may prove that

Po=a P, =bp L, =g -89,

a result which may be deduced from that of the preceding articls
by changing the sign of d_.

*440. TIn the continued fraction

we have seen that

=P b p ., =09, +ba,. .
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Povr By — (Gn+1pu + b:H—].pw—l) g™ (a’nﬂqm + bn+1gu—i)PJ|

g”+‘ g" gu'i'l Qn
—— %—1?:-—-1 Pa_ Po1y,
Tas L/ U g
but b'l+]gn—l — bnyqu__s
Gt a"+1qu+bn+1 =1 ’

and is therefore a proper fraction; hence £5+! — 2% ig numericall ¥

et L =
Lo _ Loy

n a—1

less than , and is of opposite sign.

By reasoning as in Art, 335, we may shew that every con-
- vergent of an odd order is greater than the continued fraction,
and every convergent of an even order is less than the continued
fraction ; hence every convergent of an odd order is greater than
every convergent of an even order.

Thus Dot Lon 3 positive and less than Doy _ Pu ; hence

fndg gin q?’l-‘l £n
Post  Ponr
g!n +i QSI\‘- |
Also Tzt Pan g positive and less than Pycs _ ‘E’”—ﬁ; hence
gn—1 s g?!r‘"l q!'lt-?
qﬂn gﬂu—?

Hence the convergents of an odd order are all greater than
the continued fraction but continually decrease, and the con-
vergents of an even order are all less than the continued fraction
but continually incrense.

Suppose now that the number of components is infinite, then
the convergents of an odd order must tend to some finite limit,
and the convergents of an even order must also tend to some
finite limit ; if these limits are equal the continued fraction tends
to one definite limit; if they are not equal, the odd convergents
tend to one limit, and the even convergents tend to a different
limit, and the continued fraction may be said to be osetllating; in
this case the continued fraction is the symholical representation of
two guantities, one of which is the limit of the odd, and the other
that of the even convergents,
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. . b, b b
*141.  To shew that the continued fraction —- —%F— 2_
a+ a,+ a +
has a definite value if the limil of ?J;?“-*-‘ when 1 s infinite s

+1

greater than zero.

The continued fraction will have a definite value when = is

infinite if the difference of the limits of ‘3’—‘*—1 and 1;" is equal to zero.
14l "
Now Pun _Po__bunte (& - &:1) ;
Gotn  a Fupr N oon

whence we obtain

Popr _ Pa = (_ ])n—;éﬁ-lq’aq'z{ng_g;g' L. bA?ﬂ. ba?l (ps _ _&) .

Gopr  @n ot I G % M 4,
But bu—l—l?ﬁ—l I bﬁ.—l—lq'u-l o 1 ;
q”-}-l a'ﬂ-}-l gﬂ + qu-H.Q1t~l _a'n-i-l QH + 1
b;ﬂ-‘{ L7 N
and  Zends G (Gaat b s) | % | Fubides
brﬂ-!’.ql-l. bﬁlqu-l brﬁ-l bn-l—lQn—'l

also neither of these terms can be negative; hence if the limit of

Gy lhyry . - a . .
-t M2 iy ereater than zero so also iz the limit of AV ; in which
Los! ’ a1 Tn1

bl

case the limit of is less than I; and therefore Py Drsq

H

el ntl
the limit of the product of an infinite number of proper fractions,

and must therefore be equal to zero; that is, Pt ond P2 tend to

L1 g"
the same limit ; which proves the proposition. v
For exarmpile, in the continued fraction
1* 8 3 n*
EFA- A i m+l4
2 2
Lim %l 1 PRI ER D),

it . (n+ 1)

and therefore the continued fraction tends to a definite limit.
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442 In the continued fraction LAY .
—a — a, —
i shs denominator of every component exceeds the mumerator by
unity ot least, the comvergents are positive fractions in ascending
order of magnitude.

-y

By supposition -+, —#, .. are positive proper fractions
a’ @’ «

- 1 3
in each of which the denommator exceeds the numerafor by
unity at least. The second convergent is -—-Z-’J-B-, and since &,
& — 2
1

Ty

exceeds b, by unity at least, and -21 is a proper fractior, it follows
2

b, . .

that @, - aJ is greater than b,; that is, the second convergent is
2

& positive proper fraction. In like manmer it may he shewn

b - . .
that is a poeitive proper fraction ; dencte it by f,, then
@, —
a'a

. . b . .
the third convergent 1s &—‘-- , and is therefore a positive proper
171

. b, . .
fraction. Similarly we may shew that ;—L —& % ig g positive

proper fraction; hence also the fourth zzomrn;‘rgentl
B
a - @ — g, — &,

is a positive proper fraction ; and so on.
Again, p,=0p 1~ bPue 87 Glass = bGans

Part _Pa o1y (& - P__) ;
qu-ﬂ q" gn+1 95 gn—1

henoe Pzt Pr and Px_ Pt have the same sign.
4] " " e
But £2 e —a“él— - -b-‘ = é—'i—éi‘, and is therefore pogitive;
. @ @g,—b, & ¢,
hence 22 »21, Py s By ~?2: and so on; which proves the
% 4 % L D
proposition. .
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Con. TIf the number of the components is infinite, the con-
vergents form an infinite series of proper fractions in ascending
order of magnitude ; and in this case the continued fraction must
tend to a definite limit which cannot exceed unity,

*443.  From the formula
puzanpn—l + bnpx—gi g- = au?n-—-] + 639:--9!

we may always determine in succession as many of the con-
vergents as we please. In certain cases, however, a general
expression can be found for the n'® convergent.

Ezample, To find the »** convergent fo ;ﬁi— BE—" gﬁ_— ...... :

We have p, = 5p,_; ~ 8p,_,; hence the numerators form a recurring serieg
any three consecutive terma of which axe connected by the relation.

Pn— 5.'pn‘1 + Gpn—ﬂ'

Let S=p,+pg8 + pert . 4P T 4L
then, ss in Art. 325, we have S:w.
1-55462%
8 80
But the first two convergents are 5: 19’
6 o 18 12
T 1-br46s7T -8z 1-9z°
whence Dp=18.8%1-12. 2% 16 (3" - 27},
Bimilarly if R Y T B - A g T SN
, b-8x 9 4
we find S By ios 1%
whence g.=9.3"" 14 9n-lgnHl_gnhl

L Pe_ 0320
- §;=3T-ﬁ?—2m-
This method will only succeed when «, and b, are constant
for all values of ». Thus in the case of the continued fraction

& b b

—— — —— ..., we may shew that the numerators of the
g+ G+ o+
successive convergents are the coefficients of the powers of x in

the expansion of T o e and the denominaters are the
. ' - . a+de
coefficients of the powers of 2 in the expansion of gt
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¥444. Forthe investigation of the general values of p, and g,
the student is referred to works on Finite Differences; 1t is only
in special cases that these values can be found by 4lgebra. The
following method will sometimes be found useful.

Egzample. Find the value of -1—1_: % % ......

The same law of formation holds for p, and g,; let us take u, to denote
either of them; then Uy =Nty + Ty oy
or Uy~ (1), = = (g ~ Mg}

Similaxly, Uy — My = — (g =T — Lty o}

g = dup= ~ (g - Buy);
whence by multiplication, we oblain

= (Rt 1) 1t g = (= 1Py — Buy).

The firet two convergents are % , g; hence
Pam ] P = g (r L) gy =(-
Thua Pa Pa-z_ (=11 9 Ga-1 . {- 1)M
[r+l m mt+1? n+l - m T Al

Pn— Pv_@—_? _— (' _1_)“-2 gn—_l - _g_rgj_ — (" 1)“_3

[ e A O

P 1 G n_ 1
¥ E
T A LN
. L o4 1 4 1
3~ 2’ 272 2
whence, by addition
Po__t_ 1 1 -1
m+lTRE rtl '
i 11 (- 1jn=z
Al TRt RN T

By making # infinite, we obtain
LimP—"‘=1+ (Iﬁz) =
g, ¢ e

which is therefore the value of the given expression,
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b b by

*445.  If every comporent ofa - T A i3 @ proper
1 ] 3

fraction with integral numerator and denominator, the continued
fraction is incommensurable.

For if possible, suppose that the continued fraction is com-

mensurable and equal to o, where 4 and B are positive integers;

, where f, denotes the infinite continued fraction
. Ab, — Ba,

'ag + a + B
are integers and f, is positive, therefore ' is a positive integer.

B b
then = = -
S &, +f

L

...} hence f = = % suppose. Now 4, B, a,, &,

Similarly 5= -—{:_’l?, where f, denotes the infinite continued
2

a‘ﬂ
b, b, ] _ Bb —Ca, D )
as+a‘+...,hence.;‘;——————gc =7 suppose,and.as
before, it follows that D is a positive integer ; and so on.

'§ g 9 are proper fractions; for § is less
4’ BT 0T R LI A

b, N .0 b, D .
than 2’ which iz a proper fraction; 3 i Iess’than @’ 0 is

fraction

Again

less than 5 ; and so on.
a’ﬂ
Thus 4, B, €, D, ... form an infinile series of positive integers
in descending order of magnitude; which is absurd. Hence the
given fraction cannat be commensurable.

The above result still holds if some of the components are
not proper fractions, provided that from and after a fixed com-
ponent all the others are proper fractions.

o,
proper fractiona; thus, as we heve just proved, the infinite con-

For suppose that —* and all the succesding components are

tinued fraction beginning with E—" is incommensurable ; denote

it by %, then the complete guotient corresponding to ‘;i" iz k

1 ’

and therefore the value of the continued fraction is %ﬂ .
gn-l n-g0
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This cannot be commensurable unless £a=t = Pu=s ; and this

n-l =g

condition cannot hold unless p—ﬂz&:‘i, jiﬂ‘:zi‘—‘, o, and
Face Gy Fncg Gus
finally P &; that is b} =: 0, which is impossible; hence the
given fraction must be ineommensurable.
b b, b .
*446. If every compoment of — 2. % . s o proper

8,— 8 — & —

Sraction with dntegrol numerator and :Eenon:mtw, and if the
value of the infinite continued fraction beginning with any com-
ponent is less than wnity, the fraction is incommensurable,

The demonstration is similar to that of the preceding article,

*EXAMPLES. XXXT, a.
1. Shew that in the continued fraction
b b by

4~ Uy— Ay
Prn=@Pooy ~pnPugy I =nGum1—BnGu-a

2
2. Convert (22‘: 1) into a continved fraction with unit nume-
rators. " -

3. Shew that
N q/a2+b_=a+——b 5o )

Sa+ Za+
- b b
T hemgp — o
(2) Veai-b=ua Go g
. by by b, .
4, 1Inthe continued fraction T if the denominator
1 ¢ I -

of every component exceed the numerator by unity at least, shew that
Py and g, increase with n. .

6. If ay, a,, a,...a, are in harmonical prograssion, shew that
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6, Shew that
2 z
o+ e g )+ (om g g oo
and a+é-él-; 2—2:..)(&—2—&—‘1—_— é;l:-...)=a'-’—2;,_ 5&};:

7. In the continued fraction

bbb

shew that Pri1=b0n Onsr—aPas1=0%._y.

x

8, Shew that a—b; % éz,: ...... =b.a?+%,

# being the number of components, and a, 8 the roots of the equation
B—abk—-b=0.
9. Prove that the product of the centinued fractions
i 1 1 1

a* Z_}-F c_l-l: d_l-F a_]¥ o TN R Ty Tdg e
is equal to ~1. '

Shew that
L4 0 B (Ro1p (e D)t Eatd)
1= 5= 13= g5 " (a4t 1) § :
2 3 8. w1 amy

o Earl 2

10.

11.

3.4 n+l a+2

12. 4_ ﬂ;l“:‘ '?LT2=1+1+'E+L§+‘+1£.

1
13. = 57 E— e — =e—1,

4
U

5 83 3435 3G 6@+
. 1+ 2+ 3+ ...... _"ﬂ+ Baaarn P77 583..2 -
¢ b atd
at+bd’ P a2
being formed by taking the denominsator and the sum of the numerator
and denominator of the preceding fraction for its numerator and denomi-
: -1 :
7 -

16, If u, = 3 W= ...y each successive fraction

nator reapectively, shew that %, =
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17. Prove that the 2 convergent to the continued fraction

v ¥ r L. gntl_g
fHi- rele Pyl T =
18, Find the value of s % 5

a+1- Gl aptlo

@y, @y @,... being positive and greater than unity.

19. Shew that the n™ convergent ta 1 - ‘I-l: ‘-11_' veeeno 18 equal to
the (2n—1}h convergentto% 5%: 1_1_'__ QE-F
20. Shew that the 3n'" convergent to
I N T
5= 87 1= 5- 27 1T 5o gayic
1 2 3 3—e
91. Shew that E—; 3—_[-_‘ 4—;......—?,

hence shew that ¢ lies between 2§ and 2 4.

CONVERSION OF SERIES INTO CoONTINUED FRACTIONS.

*447. Tt will be convenient here to write the serieg in the form

1 1 L !
— =+ —F +—
1 ui a [
1 1 1
Put —f ——
wooow,,,
than (ur+mr) (ur-i-l. +ur)=uru'+“
uw!
" %, + U,
1 1 1 1 w7
Hence — S ————— —_:—;
B, Uy Y = Y
1oy 4u

H. H. A, . 24
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Similarly,
11 .1 1.1 1 2!
N I T R _— .
w0 E W WU,
T 2
— _1_, ¥y Uy -
Uy — Uy U, — Uy U
and so on; hence generally
1 1
— et — + =
woou, U, . )
_ 1 N 2} w',_,
", — 'ul-'-u,i— 2%, + Uy — u“_1+u_

1 2 at
O R RS oy g, {1 N, S
Oy Ay | 2,00, oy Cs. . .,
i 1
Pt L S
Oy, Gyl Ut Yn
the‘n (an+ yn} (arﬂ-l-_x):a’nan-l-l;
__am
!ln—*arm“w
1 T 1 1
Hencs —— = =
By Gy Gy FYy Gt T
? 1 i 1 :
Agaim, Lo g E_ 1l = ,__«'f_)z___f_
Ry S Gy 4y g \dy Gy a, apla+u}
=1 &%
tpt G+ih—F
_ 1 G &
Tyt G-z ay-3
1 z 2 z"
and generally —~-.——+ L T e L ——-
& dp  Gyfty  Gydydy Gyt By - Oy,
___1_ L L G ®
at o —x+ gg-z+ @y — T

Ezample 2. Express log(l+x) as a continued fraction.

x? 2P ot
‘We have 103(1+x)"'x_“§;'+§‘“2

The required expressicn is most simply deduced from the eontinued
fraction equivalent to the series
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. 1 T 1
By putting e = D,
iy whl L
. ane
we obtain U Y=
Lyty — Lt
hence we have
& m”+$_3 o I a)is A [
4 gy gy & gt G- & T4t G-yt @ -agr+
1%z 2 3z

. 108(1”)'_1? 5-7F 3-95+ d-8z+

*448  In certein cases we may simplify the components of the
continued fraction Ly the help of the following proposition :

The continued fraction

is equal to thie continued fraction

eb  eed, ceb e, .
ity + g, €+ Ca, + ?
where ¢,, €, Cg Cgeree- are any quantities whatever.
b b,
Let f, denote —& —- .. ... ; then
@+ o+
. . b ob
the continued fraction = — 2 = W1
+fi ed i
bs
Let £, denots —-*- ; then
a,+ a,
o fi= ,flgf = clc,éL
L= .
ag+f, S+ o,
S 1 9 Ibl 1 . e
imilarly, ¢ f, = — ; ; and so on ; whence the proposition

ca+J‘

ig established.

24—2
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*EXAMPLES. XXXI b

Shew that
1 1 1 1 .
1 ;;-171 11_2~;6_+ ...... +(—1) *—;‘
1 uy* w® ¥y
Tyt ouy - gt wy—w Uy Uy
9 L, = z -
ag | agty | Gy gty Oy
1 e &z Gp—1%
-_q;u._ gqtr— @ptx— """ Ay +
3 r=1_r r+1 _‘?’_-!-_%_
" re8 T rAle- r42o T
2n 1 1 1 i ]
= tients,
4 vy Bk pll el poulll ke to % quotients
1 1 1 1 1 4 9 n?
S ldgtgte o d T =0C 5o 5o o Eadd
6 1,1 O e
- ptgt (n=1)2 1~ 1igmd. " w4 (1)t
2 x 9z 3z
T F=lt 0T 7787 38T adds
g Lol 1. 1 a b ¢
* @ ab abe abed T e+ b—l4 e—1l+ d—1i+
1 1 1 1 1 P 73 ad
e R =ty s el e Bt
10, -2 %= G 101 e ¢ Png
Toagd egt g+ T @y 1+ gt gt wy+ Qney
L _(E_ _b_ _f:.. ) = ..‘_z._. _ZL- _f_..
1, If 1——a+ Br ax '} el ruf )
shew that Pla+1+Q=a+q.
1 =z a? 2 .
12, Shew that — - ~—— 44—~ Z_ 4 | iy equal to the con-
|G b o .
tinued fraction ——- -2 Z_ L. ghere 1+ Ger 3y ... are the

. + Gt a3t at+
denominaters of the successive convergents.



CHAPTER XXXII
PROBABILITY,

449, Derixition. Ifan event can happen in & ways and fail in
b ways, and each of these ways is equally likely, the probability,

or the chanee, of its happening is a_?-“ﬁ , and that of its failing is
b -
a+b’

For instance, if in & lottery there are 7 prizes and 25 blanks,

the chance that a person holding 1 ticket will win a prize is 3‘9,

and his chance of not winning is %g
450. The reason for the matheruatical definition of pro-
bability may be made clear by the following considerations :

If an event can happen in @ ways and fail to happen in 5
ways, and all these ways are equally likely, we can assert that the
chance of its happening is to the chance of its failing as a to &
Thus if the chance of its happening is represented by ke, where
k is an undetermined constant, then the chance of itz failing
will be represented by k. :

. chance of happening + chance of failing = % (a + 3)
Now the event iz certain to happen or to fail ; therefors thé sum
of the chances of happening and failing must represent cerfainty.
If therefore we agree to take certainty as our unit, we have

1=k(ﬁ+ b), or k=m;
.. the chance that the event will happen is E%E: ,
and the chance that the event will not happen is a_?-_b

Cor, If p is the probability of the happening of an event,
the probability of its not happening is 1 — p.
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451. Instead of saying that the chance of the happening of
an event ig %, it is sometimes stated that the odds are a fo b
a

in_favowr of the event, or b to a against the event.

452, The definition of probability in Art. 449 may be given
in a slightly different form which is sometimes useful, If ¢ is the
total number of cases, each being equally likely to oceur, and of
these « are favourable to the event, then the probability that the

event will happen is g, and the probability that it will not

happen is 1- ; .

Ezample 1. What is the chance of throwing & number greater than 4
with an ordinary die whose faces are numbered from 1to 6?

There are 6 possible ways in which the dis can fall, and of these two
are favourable to the svent required ;

. 2 1
therefore the reguired chance =54

Ezample 2. From s bag containing 4 white and 5 black balls s man
drawe 3 at random; what ave the odds against thess being all blaek?

The total number of ways in which 3 balls can be drawn is ', and
the number of ways of drawing 3 black bally iz 3C,; therefors the chance
of drawing 3 black balls

: %C, 5.4.3 &
g T e T
‘Fhue the odda against the event are 87 to 5.

Ezample 3. Find the chence of throwing at least oue ace in a single
throw with two dice.

The possible number of cases is § x 0, or 36.

An sce on one die mauy be associated with any of the 6 numbers on the
other die, and the remeining § rumbers on the firat die may each be aszso-
cinted with the ace on the second die; thus the number of favourable cases
is 11.

Therefore the required chance is % .

Or we may reason as follows :

There are 5 ways in which each die ean bLe thrown so as not to give an
ace; hence 25 throws of the two dice will exclude eees, That is, the chance

of sot throwing one or mors aces i3 gg ; 8o that the chance of throwing one
aece ot least is 1“2_2’ or %-é
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Ezample 4. Find the chance of throwing more than 15 in one throw with
3 dice.

A throw amounting fo 18 must be mads up of 6, 8, 6, and this cen cocur
inlway; 17 can be made up of 6, 8, 5 which can occur in 3 ways; 16 may
be made up of &, 6, 4 and 6, 5, 5, each of which arrangements cen oceur in
8 ways.

Therefore the number of favourable cases is

1+3+3+43, or 10,

Ang the total number of cases is 6%, or 218;

therefore the required chance= -251

| &

&

Iog "

[=-]

Egample 5. A has 3 shares in a lottery in which there are 3 prizes and
6 blanke; B has 1 share in a lottery in which thers is 1 prize and 2 blenks:
shew that 4’s chancs of success is 10 B's a5 16 to 7.

A may draw 3 prizes in 1 way;

.

be may draw 2 prizes and 1 blank in ?——3 %8 ways;

he may draw 1 prize and 2 blanks in 3 x g—-g- waya;

the purn of these nurcbera ia 64, which is the number of ways in which 4 can

, or B4 ways;

64 16
ther ! == e,
efors A’s chance of success 5= 51

win a prize. Also he con draw 3 tickets in g—-ﬂ

1’5 chance of suceess is clearly % H

therefore A's chance : I8 I’.‘.]'lf.l.Ill}Q:l—G- : 1
21 "8
=16 : 7.
. . . B6.5.4
Or we might have reasoned thus: 4 will get all dlanks in 9.3+ °F

L. . 20 &

20 ways; the chance of which is g o 5y

therefore A’s ehance of success=1- 5 = 16

21 721"

4533, Suppose that thers are a number of events 4, B, G, ...,
of which one must, and only one can, occur; also suppose that
a, &, ¢,... are the numbers of ways respectively in which these
events can happen, and that each of these ways is equelly likely
to ceeur; it is required to find the chance of each event.

The total number of equally possible ways is a+b+e+ ...,
and of these the numnber favourable to 4 is g; henco the chance
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that 4 will happen is Similarly the chance that B

a+brc+ ...

will happen is - and g0 on.

a+bte+...’

454. From the examples we have given it will be seen that
the solution of the easier kinds of questions in Prehbability requires
nothing more than a knowledge of the definition of Probability,
and the application of the laws of Permutations and Combina-
tions.

EXAMPLES, XXXIL a.

1. In a singls throw with two dice find the chances of throwing
(1) five, (2) six.

2. From a pack of 52 cards two are drawn at random; find the
chance that one is a knave and the other a gueen:

3. A bag contains 5 white, 7 black, and 4 red balls: find the
chance that three balls drawn at random are all white.

4, If four coing are tossed, find the chance that there should be
two heads and two tails.

5. One of two events must happen: given that the chance of the
one is two-thirds that of the other, find the cdds in favour of the cther.

6. If from a paf:k four cards are drawn, find the chance that they
will be the four honours of the same suit.

7. Thirteen persons take their places at a round table, shaw that
it is five to ane against two particular persons sitting together.

8. There are three avents A, B, €, one of which must, mul only
one can, happen; the odds are 8 to 3 against 4, 5 to 2 against B find
the odds against ¢

9. Couﬁpam the chances of throwing 4 with one die, 8 with two
dice, and 12 with three dice.

10, Tn shuflling a pack of cards, four are accidentally dropped ; find
the chance that the missing cards should be one from each suit.

11. A has 3 shares in a lottery containing 3 (})rizes and 9 blanks;
B has 2 shares in a lottery containing 2 prizes and € blanks: compare
their chances of success.

.12, Shew that the chances of throwing six with 4, 3, or 2 dice
respectively are ags 1: 6: 18.
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13. There are three works, one consisting of 3 volumes, one of 4
and the other of 1 volume. They are placed on a shelf at random
pm\zge that the chance that volumes of the same works are all together

i1 140‘

14, 4 and B throw with two dice; if 4 throws 9, find B's chance
of throwing & higher number,

15. The letters forming the word CZifton are placed at random in
a row: what is the chance that the two vowels come together !

16. In a band at whist what is the chance that the 4 kings are
held by & specified player?

17. There are 4 shillinga and 3 half-crowns placed at random in
a line: shew thet the chance of the extreme coins being hoth half-

crowns is % Generalize this result in the case of m shillings and

% half-erowna.

455. 'We have bitherto considered only those eccurrences
which in the language of Probability are called Simple events.
‘When two or more of these occur in connection with each other,
the joint occurrence ig called a Compound event,

For example, suppose we have a bag containing 5 white
and 8 black balls, and twoe drawings, each of three balls, are
made from it successively. If we wish to estimate the chance
of drawing first 3 white and then 3 black balls, we should be
dealing with a compound event.

In such a cagse the result of the second drawing might or
might not ba dependent on the result of the first. If the balls
are not replaced after being drawn, then if the first drawing gives
3 white balls, the ratio of the black to the whites balls remaining
ia greater than if the first drawing had not given three whits;
thus the chance of drawing 3 Dblack balls at the second trial
is affocted by the result of the first. But if the halls are re-
placed after being drawn, it is clear that the result of the second
drawing is not in any way affected by the result of the first.

We are thus led to the following definition :

Eventa are said to be dependent or independent according as
the occcurrence of one does or does not affect the occurrence of the
others. Dependent events are sometimes said to be contingent.
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456, If there are two independent events the vespective pro-
bahilities of which are known, 1o find the probability that both will
happen.

Suppose that the first event may happen in a ways and fail
in b ways, all these cases being equally likely ; and suppose that
the second event may happen in a’ ways and fail in 3" ways,
all these ways being equally likely. Each of the a + b cases may
be asscciated with each of the @'+ & cases, to form (o + b) («' + 1)
compound ecages all equally likely to occur.

In ao’ of these both events happen, in 58" of them hoth fail,
in @b’ of them the first happens and the second fails, and in &'b
of them the first fails and the second happens. Thus

s

. _,__,___a'a .
(a+b} (&' + &)
bb’
(a+d) (@ +5)
a'bf
(e +3) (&' + )

is the chance that Loth events happen;
ia the chance that both events fail;

is the chance that the first happens and the second

fails;
(+_b;6€—m iz the chance that the first fails and the second
& a

happens.

Thus if the respective chances of two independent events are
p and p,, the chance that both will happen is pp’ Shmilar
reasoning will apply in the case of any number of indopendent
ovents. Hence it is easy to see that if », »,, p,, ... sre the
respective chances that a number of independent events will
separately happen, the chance that they will all happen is
0,0y - ; the chance that the two first will happen and the rest
fail is pp, (1-2,) {1 ~p}...; and similarly for any other par-
ticular cage.

457. If p is the chance that an event will happen in
one trial, the chance that it will happen in any assigned sue-
cession of + trinly is p"; this follows from the precoding article
by supposing

PPy By e S P

To find the chance that some one at lenst of the events will
happen we prqeeed thus: the chance that all tho events fail
s{l-p)(l-p3{1-p).., and except in this case some one
of the events must happen ; hence the required chance is

1-(1=-p)(1=-p)y (1 -p,) ..
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Example 1. Two drawings, each of 3 halls, ave mada from & bag con-
taining 6 white and B black balls, the Lalls being replaced before tho sseond
trials If‘mdﬁhe chancae that the first drawing will give 3 white, and the secend
3 black bhalla.

The number of ways in which 3 balls may be drawn is 8¢, ;

5.4 13.12.iL_ 5

Therefore the chance of 8 white at thes firef trial = : H
1.2 1.2.3 143°

and the chanee of 3 black at the second trial:s;?;.f.i-‘_ 13.12.11 = 3

19,37 13,3 rEg

3 25 140

herefore the ch £ th devent=— x S = o
therefore the chance of the compound event =7y x fr = oo

Ezample 2. In fosging 4 coin, find the chance of throwing head and 1ail
alternately in 8 suceessive trials.

Here the firsl throw mmst give either head or tail; the chance that the
gecond gives the opposite to the firat iy 1 aud the chance that the third throw

2 7
is the same as the firsf ia % .
1 11
Therefore the chance of the compound nwc-m‘a:§ Xg=7-

Ezample 8. Supposing that it ia 9 to 7 against a person 4 who is now
85 years of age living till he ie 65, and 3 to 2 against & person B now 45
living till he is 76 ; find the chance that one at least of thess persona will be
alive 30 years hence.

The chance that 4 will die within 30 years is ng ;
3
5 *
fhezefore the chance thab both will die it — X &, or 2¢ ;

refore the oh i EXE 5
therefore the chance that both will not he dead, thet is that one at least will
5
80"

the chanece that B will die within 80 years is

. . b
be alive, is 1 - g o

438, Ty a slight modification of the meaning of the symbols
in Art. 456, we aro enabled to estimate the probability of the
concurrence of two dependent events. For suppose that when the
first event has happened, ¢ denotes the number of ways in which
the second event can follow, and " the number of ways in which
it will not follow ; then the number of ways in which the two
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events can happen together is aa’, and the probability of their
. ax
conourrendce is M—*—-—m - .
Thus if p is the probability of the first event, and " the
contingent probability that the second will follow, the probability
of the concurrence of the two events is pp'.

Ezample 1, In s hand st whist find the chance that a spacified player
holds both the king and gueen of trumps,

Denote the player by 4; then the chancs thef 4 has the king is clearly
%: for this particnlar card can be dealt in 52 different ways, 13 of which fall
to 4. ‘The chance thai, when he has the king, he can also hold the gueen ia
then {—?; for the qneen can be deslt in §1 ways, 12 of which fall to A.

i3
. 13 12 1
Therefore the chance requu:e&:ﬁ X =97
Or we might reason as follows:

The number of ways in which the king and the queen can be dealt to 4 is
equal to the number of permutations of 13 things 2 at a fime, or 13.12,
And similarly the total number of ways in which the king and gueen can be
dealt in 53,351,

2
Therefore the chn.nee=13 2" L

52517 17 8 before.

Ezample 2. Two drawings, each of 3 bails, are made from = bag con-
taming 5 white and 8 ‘black balls, the balls not being replaced before the
stcomd trial: find the chanes that the first drawing will give 3 white and
the second 3 black halla.

At the first trinl, 3 balis may be drawn in *C, ways;
snd 3 white bells may be drawn in ¢, ways;

. o 5.4 . 13.12.11 5
therefozre the chance of 3 white at first trial= 3T To s i

When 3 white balls have been drawn end removed, the bag contains
2 white and 8 black balls ;
therefore at the second trial 3 bslls may be drawn in WC, waya;
and 3 black balls runy be drawn in 8¢, ways; .
therefore the chanee of 3 black at the second trial

_8.7.6 10.8.8 7
“l.2.371.2.3 T15°
therefore the chance of the componnd event
ST
T143 7 15 499
The student should compare this solution with that of Bx. 1, Art.-457.
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459, If an eveni can happen in twe or more different ways
which are mutually exclusive, the chanece that it will happen is
the sum of the chances of ils happening in these different ways.

This is sometimes regarded as a self-evident proposition arising
immediately out of the definition of probability. It may, how-
ever, be proved as follows:

Suppose the event can happen in two ways which cannot
concur; and let Z‘ . b5 be the chances of the happening of the
event in these two ways respectively. Then out of &5, cases
there are @b, in which the event may happen in the first way,
and ab, ways in which the event may happen in the second;
and these ways cannot concwr. Therefore in all, out of &35, cases
there are ab, +ab cases favourable to the event hence the
chance that the event will happen in one or other of the two
ways 1s

ab,+alb @ @
b b B,
Similar reasoning will apply whatever be the number of ex-
clusive ways in which the event can happen.

Hence if an event can happen in = ways which are mutually
exclusive, and if p,, p,, P, .- Pa BT€ the probabilities that the
event will happen imn these different ways respectively, the pro-
bability that it will happen in some one of these ways is

pi+p,+ps ...... + P

Ezample 1. Find the chance of throwing 9 at lesst in a single throw
with two dice.

9 can ba made up in 4 ways, and thus the chance of thmwmg 9is :6
10 can be made up in 3 ways, and thus the chance of throwing 10 is 336 .
11 can be made up in 2 ways, snd thus the chance of throwing11lis - ;

12 ¢an be made up in 1 way, end thus the chance of throwing 12 ig :’ilh

Now the chance of throwing a number not less than 9 is the sum of these
separate chances;

5 4+3+%+1 5
. the required chance= %~
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Ezample 2. Ope purse contains 1 sovereign and 3 shillings, a second
purse eoniaing 2 sovereigns and 4 shillings, and a third containg 3 sovereimms
and 1 shilling. If a coin is taken ont of one of the purses selected at
random, find the chance that it is a sovereign.

Sinee each purse iz equally likely to be taken, the chance of selecting
the firat is z ; and the chance of then drawing & sovereign is 1; hence the

3
chance of drawing a soversign so far as it depends upon the firet purse is

%x }, or 1—%—) Similarly the chance of drawing s soversign so far as it
depends on the second purse is % x g , Or %; and from the third purse the

chance of drawing a soverelgn is% X g , or 1;

. 1 1 1 4
RN therequuedch&n(}e:i§+§+z_§,

460, In the preceding article we have seen that the pro-
bability of an event may sometimes be considered as the sum of
the probabilities of two or more separate events; bub it is very
important to notice that the probability of one or other of
a series of events is the sum of the probabilities of the separate
events only when the events are mutually exclusive, that is, when
the occurrence of one is incompatible with the ocourrence of any
of the others.

Ezample. From 20 tickets marked with the firat 20 nﬁmsmls, ong ia
drawn at randem: find the chance that it is a moitiple of 3 or of 7.

The ckhance that the number is a multiple of 3 is —E:- , and the chance that

20
2
it is g multiple of Tis 3° and these events are mutvally exclusive, hence the
required chence is % + % , Or g

But if the question had been: find the chance thai the nhumber is a
multiple of 3 or of 5, it would have been incorrect to reason a2 follows:

Because the chapce that the nuwmber iz a multiple of 3 i -2%, and the
ehance that the number is a multiple of & is ol thersfore the chanes that

a0’
it iz & multiple of 3 or 5 is -2%+;—6, or%. For the number on the tickes

might be a multiple otk of 3 and of 5, so that the fwo events considered
ars not mutually exclusive.

461. It should Le observed that the distinetion between
simple and compound events is in many cases a purely artifieial
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one ; in fact it often amounts to nothing more than a distinction
between two different modes of viewing the same occurrence.

Ezample. A bag conteing § white and 7 blaek balls; if two balls are
drawn what is the chance that one is white and the other black?
(i} Regarding the occurrence as a simple event, the chance
35
={5 JEI -7 g
(‘j X 7} B G‘: &6
fiiy The occurrence may be regarded as the happening of one or other
of the two following compound events:
{1) drawing a whiie and then a black ball, the chanee of which ia
5l B
12711 132’
{2) drawing = black and then & white ball, the ¢hance of which ia
75 3
12 711" 7 1327
And since these events are mutnally exclusive, the required chance
35,85 35
132 T 1527 66°
Tt will be noticed that we have here assumed that the chasee of drawing

two specified balls successively is the same as if they were dravn sironl.
taneously. A little consideration will shew that this must be the case.

EXAMPLES. XXX b.

1. What is the chance of throwing an ace in the first only of two
successive throws with an ordinary die?

2. 'Three cards are drawn at random from an ordinary pack: fin
the chance that they will consist of a knave, a queen, and & king,

3. The odds against a certain event are 5 to 2, and the odds in
favour of another event independent of the former are 6 to 5: find the
chance that one at least of the events will happen.

4. The odds against 4 solving a certain problem are 4 to 3, and
the odds in favour of B solving the same problem are 7 to 5: what is
the chance that the problem will be solved if they both try 1

. 5. What is the chance of drawing a sovereign from a purse ocue
compartment of which contains 3 shillings and 2 sovereigns, and the
other 2 sovereigna and 1 shilling ?

8. A bag contains 17 counters marked with the numbers 1 to 17.
A counter is drawn and replaced; a second drawing is then made:
:ﬁa;.t is the chance that the first number drawn is even and the second
1
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7. Four persons draw each a card from an ordinary pack: find
the chance (1) that a card is of each suit, (2} that no two cards are of
equal value.

8. Tind the chance of throwing six with a single die at least once
in five trials,

9, The odds that a book will be favourably reviewed by three
independent critics are 5 to 2, 4 to 3, and 3 to 4 respectively; what is
the probability that of the three reviews a majority will be favourable ?

10. A bag contains 5 white and 3 black balls, and 4 are successively
dravn out aud not replaced ; what is the chance that they are alternately
of different colours ? .

11. In three throws with a pair of diee, find the chance of throwing
doublets at least once.

12. If 4 whole numbers taken at random are multiplied together
shew that the chance that the last digif in the productis 1,3, 7, or 9
.16
8 % .

13, In & purse are 1€ coing, all shillings except one which is a
sovereign; in another are ten coins all shillings. Nine coins are taken
from the former purse and put into the latter, and then nine coins are
taken from the latter and put into the former: find the chance that
the soveraign is still in the first purse.

14, If two coing are tossed 5 times, what is the chance that there
will be 5 heads and 5 tails?

15. If 8 coins are tossed, what is the chance that one and only
one will furn up head?

16. 4, B, C in order cut a pack of cards, replacing them after each
cut, on condition that the first who cuts a spade shall win a prize: find
their respective chances.

17. 4 and B draw from a purse containing 3 sovereigns and
4 ghillings: find their respective chances of first drawing a sovereign,
" the coins when drawn not being replaced.

18, A party of n persons sit at a round table, find the odds against
two specified individuals sitting next to each other.

19, 4 is one of 6 horses entered for a race, and is to be ridden b
one of two jockeys B and ¢ It is 2 to 1 that B rides 4, in whicl
case all the horses are equally likely to win; if ¢ rides 4, his chance
ia trebled : what are the odds against his wianing?

20. Tfon anaverage 1 vessel in every 10 is wrecked, find the chanes
that oub of & vessels expected 4 at least will arriva aafely.
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462, The probability of the happening of an event in one
trial being known, required the probability of its huppening once,
hwice, thres times, ... cxuctly in n frials.

Let p be the probability of the happening of the event in
a single trial, and let g =1 —p; then the probability that the
event will happen exactly  times in # trials is the (> + 1)* term
in the expansion of {g + p}™.

For if we select any particular set of » trials out of the total
number n, the chance that the event will happen in every one of
these v trials and fail In all the rest is p"¢"™" [Art. 456], and as
a set of » trials can be selected in "C_ ways, all of which are
equally applicable to the case in point, the required chance is

a=r

MOP?}PQ
If we expand (p+¢)" by the Binomial Theorem, we have

Pu + Nclpn—lg + ncepn—viqi o nC“-rprQu—r Fou gn;
thus the terms of this series will represent respectively the
probabilities of the happening of the event exactly = times, n—1
times, 2 — 2 times, ... in n trials.

463. TIf the event happens = times, or fails only once,
twice, ... (n—r) times, it happens r times or more ; therefore the
chance that it happens af least » times in « trials is :

pn_i_nolpn-lg_{_uogpu—%gs%_ i +ucl_'rprqu—r,

or the sum of the first n—r+1 terms of the expansion of

{(p+a)

Ezample 1. In four throws with a pair of diee, what is the chance of
throwing doublets twice at least?

In a single throw the chance of doublets is g%, T :—;; and the clignes of
failing to throw donblets ia g . Now the required event follows if doublets
gre thrown four times, three times, or twice; therefore the required chance

4

- 1
in the sum of the first three terms of the expansion of (-b— + G

1 . . 18
Thua the chance =gi(1+4...1+6.5 =15

H. H. A. 25
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Example 2. A bag containg a certain number of balls, some of which are
white: a ball is drawn and replaced, another is then drawn and replaced;
and se on: if p is the chance of drawing & white ball in a zingle trial, fing
the number of white balls that is mest likely to have been drawn in » trials,

The chance of drawing exactly r white ballz is *C,p"¢"~, and we have fo
find for what valne of r this expreseion is greatest.

NOW ﬂcrprqn—-f> !\Cr_lpf—lg'n—rr—lj,
80 long o3 (n-r+1jp>rg,
or (n+1)p={p+q)r

But p+g=1; hence the required value of + iz the greabest integer in
pln+1).

If n is snch thet pr is an integer, the most lkely case is thei of pn
smeeesses &nd gn failures

464, Suppose that there are n tickets in a lottery for a prize
of £x; then since each ticket s equally likely to win the prize, and
a person who possessed all the tickets nrust win, the money value of

each ticket is £z; in other words this would be a fair sum to
pay for each ticket; hence a person who possessed r tickets might
reasonably expect ‘£’t§ as the price to Le paid for his tickets by
any one who wished to buy them; that is, he would estimaie
£;a$ as the wor:th of his chance. It is convenient then to in-
troduce the following definition :

If p represents a person’s chance of sucecess in any venture
and M the sum of money which he will receive in case of success,
the sum of money denoted by pM is called his expectation.

465. In the same way that expectation is used in reference
to a person, we mey couveniently use the phrase probable value
applied to things.

Exzample 1. One purse containg 5 shillings and 1 soversign: a second
purse contains § shillings, Two coing are taken from the first and placed in
the second; then 2 are taken from the second and placed in the first:
find the probable value of the contents of each purse.

The chance that the sovereign is im the firgt purse is equal to the snm of
the chances that it bas moved {wice and that it has not moved af all;
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=

Bl b

. 11 3
he ch =c.. 2
that is, the chanee 34+ I

.~ the chance that the seversign is in the second purse:%.
Hence the probable value of the first purae
3 L 1
=- of 238, +; of €s.=£1. s, 3d,
4 4
. the probable value of the second puree
=315 - 2032, =102, 0d.
Or the problem may be solved as follows :
The probable value of the coins removed
=% of 25s. =81s, :
the probable value of the coins brought back
= 1—" of {Bs, + 848} =318

.. the probable value of the firai purse

= (25 - 83+ 3 %) shillings=£1. Os, 3., ns before,

Ezample 2. 4 and D throw with one die for a stake of £11 which is to
be won by the player who first throwe 6. If 4 has the first throw, what are
their respectiva expectations?

In hia firet throw A’s chance is %; in his second it ig % ® g ® %, bacavse

esch player must have failed onoe bafore 4 can have a second throw; in his
5 13

third throw his chance is (z) X g becausé each player must have failed

twice; and 8o on.,

Thus 4's ahence is the sum aof the infinite series

(2 () )

Similarly B'a chanee iz the pam of the infinite peries

5 1 52 /B ]
s (3 () ks
.. A's chance 18 to B's s § is to 5; their respective chances are therefore

iﬁi aud 15—1, and thelr expectations are £6 and £3 respectively.

25—2
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466. 'We shall now give two problems which lead to useful
and interesting results.

Ezxample 1. Two players 4 and B want respectively m and » points of
winning a set of games; their chances of winning = single game are p and ¢
respectively, where the sum of p and ¢ is unity; the aiske is to belong to
the player who first makee up his set: determire the probabilitiea in favour
of erch player,

Suppose that 4 wing in ezactly m+r games; to do this he must win the
last garae and m -1 out of the preceding m+r—1 games. The chance of
this is m-(-r—lcm__l 29l'ﬂ--l qf?‘ or ﬂl+r-lcm_1 pm gr'

Now the set will necessarily be decided in m+n—-1 games, and 4 may
win his m games in eractly m games, or m+1 games, ..., of m+n— 1 games;
therefors we shall obtain the chance thet 4 wina the set by giving to r the
values 0, 1, 2, ...n—-1in the expression m*-1g__ gmar < Thus 4’a cheneeis

f
-2

N XS J L e

# {Hm“ R T W & %
gimilarly B’s chance is
+n-2

» 'n____(n+1) 2 IM_ m_1

q {1+np+ T3 P+"'+m—1]n—lp .

This question is known as the ““ Problem of Points,” and has
engaged the attention of many of the most eminent mathematicians
since the time of Pascal. Tt was originally proposed to Pascal by
the Chevalier de Méré in 1654, and was discussed by Pascal and
Fermat, but they confined themselves to the case in which the
players were supposed to be of equal skill: their results were also
exhibited in & different form. The formule we have given are
assigned ta Montmert, as they appear for the first time in & work
of his published in 1714, The same result was afterwards ob-
tained in different ways by Lagrange and Laplace, and by the
latter the problemn was treated very fully under various modi-
fieations,

Erxample 2. There are n diee with f faces marked from 1 o f; if these
sre thrown st random, what iz the chance thai the sum of the numbers
exhibited sliall be egnal to p?

Sinee any one of the f faces may be exposed om any one of the n dice,
the number of ways in which the dice may fali is j™.

Also the pumber of ways in which the numbers thrown will have p for
their sum is equal to the coefficient of 4P in the expansion of

(' + 224234 42

for this coefficient arises out of the different ways in which » of the indices
1, 2,3,... fcan be taker so 838 fo form p by addition.
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Now the above expression =£* (I +o+x2+ ...+ 2/-1"

1-zh"
”"(1:‘;3 :

We liave therefore to find the coefficient of zP—* in the expansion of
{L- ) (L -z

n ww=-1 . nn—1j(n-2} N
Now (i—zfi*=1-nz’+ ) L — 1793 F L
1 1 2
and (1-zx)=%=1+unw+ TL(;—H—_Q—) .:-—j—u—“—‘:—“)a—(’:——} Fol

Multiply these series together and pick cut the coeftlicient of x~" in the
product ; we thus obtain

ﬂ(r:.—f-l)_:.u.'(JEi--_1]_?1 rin+1)...(p-f-1)
== SNTETE
+n(n—l} niptl). (p-20-1)
1.2 7 F_p—n—?f

where the series is fo continue so long as no negative factors appear. The
required probability is obtained by dividing this series by ™,

This problem is due to De Moivre and was published by him
in 1730 ; it illustrates a method of freguent utility.

Laplace afterwards obtained the same formula, but in a mueh
more laboricus manner; he applied it In an attempt to demon-
strate the existence of a primitive cause which has made the
planets to move in orbits close to the ecliptic, and in the same
direction as the earth round the sun. On this point the reader
may consult Todhunter's History of Probabitity, Art. 957,

EXAMPIES. XXX, e.

- 1. Ina certain game A£’s skill is to B's as 3 to 2: find the chance
of 4 winning 3 games at least out of 5.

2. A coin whose faces are marked 2, 3 is thrown 5 times: what
is'the chance of obtaining a total of 127

3. In each of a set of games it is 2 to 1 in favour of the wiuner
of the previous game: what is the chance that the player who wins
"the first game shall win three at leagt of the next four?

4. There are 9 coing in o bog, b of which are sovereigns and
the rest are unknown coins of equal value; find what they must be if
the probable value of a draw is 12 shillings.
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B. A coin is fossed » times, what is the chance that the head will
present itself an odd number of times?

6. From a bag containing 2 sovereigns and 3 shillings a person
is allowed to draw % coins indiscriminately; find the value of his ex-
pectation.

7. Bix persons throw fur a stake, which is to Lbe won by the one
who first throws head with a penny ; if they throw in succession, find
the chance of the fourth perso.

8. Counters marked 1, 2, 3 are placed in & bag, and one is with.
drawn and replaced. The operation heing repeated three times, what
is the chance of obtaining a total of 61¢

9. A coin whose faces are marked 3 and 5 is tossed 4 tiines : what
are the odds against the sum of the numbers thrown being less than 15

10. Find the chance of throwing 10 exactly in one throw with
3 dice.
1. Two players of equal skill, 4 and B, are playing a seb of
ames; they leave off playing when 4 wants 3 points and B wants 2,
%f the stake is £16, what share cught each to take?

12, 4 and B throw with 8 dice: if 4 throws §, what is B's chance
of throwing a higher number ?

13, 4 had in his pocket a sovereign: and four shillings; taking out
two coins at random he promises to give them to B and € What is
the worth of (s expectation?

I4,  In five throws with a single die what is the chance of throwing
(1) three aces exactly, (2) three aces ab least.

15. 4 makes a beb with B of 5s. to 9s. thut jua siuﬁgle throw with
two dice he will throw seven before B throws four. Fach has a pair
of dice and they throw simultaneously until one of them wins, equal
throws being disregarded: find B’s expectation.

16, A person throws two dice, one the commeon cube, and the other
aregular tetrahedron, the number on the lowest face being taken in the
czse of the tetrahedron; what is the chance that the sum of the
numbers thrown is not less than 57

7. A bag contains & coin of value A, and a nuraber of other coins
whose aggrepate value iz m. A person draws one at & time £ill he
draws, the coin ¥ ; find the value of his expectation.

18. If 8n tickets numbered 0, 1, 2, _..... 6rn—1 are placed in a bag,
and three are drawn out, shew that the chance that the sum of the
numbers on them is equal to 6 iz

_ 3n
(6n—1) Bn-2)"
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*INVERSE PROBABILITY.

*467. Inall the cases we have hitherto considered it has been
supposed that our knowledge of the caunses which may produce a
certain event is such as to enable us to determine the chance of
the happeniug of the event. We have now to consider problems
of a different character. For example, if it is known that an
event has happened in consequence of some one of a certain
number of eauses, it may be required to estimate the probahbility
of each cause being the true one, and thence to deduce the pro-
bability of future events occurring under the operation of the
samMe CAuses.

*468. Before discussing the general case we shall give a
mumerical illustration,

Suppose there are twa purses, one containing 5 sovereigns
and 3 shillings, the other containing 3 sovereigns and 1 shilling,
and seppose that & sovereign has been drawn: it is required to
find the chance that it came from the first or second purse.

Consider a very large number ¥ of trials; then, since before
the event each of the purses is equally likely to be taken, we may

agsuine that the first purse would be chosen in 3 ¥ of the trials,

E

. B . :
and in g of these a soversign would be drawn ; thus a sovereign
o]

would be drawn g X éN, or T@N times from the first purse.

The second purse would be chosen in éi‘f of the trisls, and in

3 . .
— of these a sovereign would be drawn ; thus a sovereign would

4

be drawn gﬂf times from the second purse.

Now XN is very large but is otherwise an arbitrary number;
let us put ¥ =16x; thus & sovereign would be drawn bBn times
from the first purse, and 82 times from the second purse; that is,
out of the lln times in which a soverelgn is drawn it comes
from the first purse 3m times, and from the second purse 6a
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times. Hence the probability that the sovereign cawme from the

first purse is -15—1, and the probability that it came from the

. 6
second is i

*169. It is important that the student’s attention should he
directed to the nature of the assumption that has been made in
the preceding article. Thus, to take o partioular instance,
although in 60 throws with a perfectly symmetrical die it may
not happen that zee is thrown exactly 10 times, yet it will
doubtiess be at once admitted that if the number of throws is
continually increased the ratio of the number of ‘aces to the
number of throws will tend moore and more nearly to the limit

%. There is no reason why one face should appear oftener than
another ; hence in the long run the number of times that each of
the six faces will have appeared will be approximately equal,

The above instance is a particular case of a general thecrem
which is due to James Bernoulli, and was first given in the dry
Conjectandi, published in 1713, eight years after the author’s
death. Bernoulli's theorem may be enunciated as follows:

If p is the probability that an event happens in o single trial,
then if the number of trials is indefinitely tnoreased, 44 beconss a
certaindy that the limit of the ratio of the muwmber of successes to the
number of trials s equal o p; tn other words, if the number of
trials ia N, the number of successes may be taken o be pIN.

See Todhunter's Mestory of Probability, Chapter vii. A proof
of Bernoulli's theorem is given in the article Prodabdility in the
Eneyclopedic Britannica.

*470. An observed event has happened through some ons of a.
number of madually exclusive couses . requived to find the pro-
bakility of any assigned cause being the true ons.

Let there be n causes, and before the event took place suppose
that the probability of the existence of these causes was estimated
at P, P, P, ... P . Letp denote the probability that when the
7 cause exists the event will follow : after the event has ocourred
it is required to find the probability that the «! cause was the
true one,
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Consider a very great number ¥ of trials, then the first cause
exists in PV of these, and out of this number the event follows
in p N ; similarly there are p, P, N trials in which the event
follows from the second cause; and so on for each of the other
causes. Hence the number of trizls in which the event follows ig

(pd" +p .+ +p PN, or ¥3(pP);

and the number in which the event was due to the + caunse is
2. PN ; hence qfter the event the probability that the #* cause
was the true one is

j)rj),ﬂr -+ ..'.VE (2).&.");

that is, the probability that the event was produced by the +*
7P

cause is S
Z{pf)

*471. It is necessary to distinguish clearly between the pro-
bability of the existence of the several causes estimated before
the event, and the probability after the event has happened of any
assigned cause being the true one. The former are usually called
a priori probabilities and are represented by P, P, P,, ... I’ ;
the latter are called a posieriori probabilities, and if we denote
them by @,, @,, €., ... €., we have proved that

P
Q pr

IR
where p,. denotes the probability of the event on the hypothesis
of the existence of the 7 cause, '

From thig result it appears that 2(g) =1, which is other-
wise evident as the event has happened from one and only cne
of the causes.

We shall now give another proof of the theorem of the pre-
ceding article which does not depend on the principle enunciated
in Art. 469. ‘

*479.  An observed event hos happened through some one of a
nanber of mutually exclusive causes: vequired o find the pro-
bability of any assigned cause being the lrue one,

Let there be n causes, and before the event took place suppose that
the probability of the existence of these causes was estimated at
P, P, P,.. P,. Letp denote the probability that when the
2 cause exists the event will follow ; then the aniecedens proba-

bility that the event would follow fromn the r* canse is p P,
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Let @_be the o posteriori probability that the +** cause was the
true one; then the probability that the +* cause was the true one
is proportional to the probability that, if in existence, this cause
would produce the event ;

9 9 _ _6 i@ _ 1
2P p P, Tk Z(ph) Py
_ el
¢= Sy

.

Hence it appears that in the present class of problems the
product P p,, will have to be correctly estimated as & first step;
in many cases, however, it will be found that #,, P, P,, ... are
all equal, and the work is thereby much simplified.

Ezumple, There nre 3 bags each containing 5 white balls and 2 black
balls, and 2 bags each containing 1 white ball and 4 black balls: a black ball
having been drawn, find the chance that it came from the first group.

Of the five bags, 3 belong fo the first group and 2 to the second; hence
3 2
5 ] Pﬂ =5 .
If & bag is selected from the first group the chance of drawing a black

bail is %; if from the second group the chance js % ; thus p, =$, p2=:;

Py=

L] 3
Q P1P1=E; PaPe= 55"

Henoe the ehance thai the black ball came from one of the first growp is
6 .(8 8y 15
B \sstas) "3

*¥473. When an event has been observed, we are able by
the method of Art. 472 fo estimate the probability of any
particular cause being the true one; we may then estimate
the probability of the event happening in & second trial, or
we may find the probability of the occurrence of some other
event.

For example, p, is the chance that the event will happen
from the #® cause if in existence, and the chance that the %
cause is the true one iz @,; hence on a second trial the chance
that the event will happen from the »** cause is p,,.. Therefore
the chance that the event will happen from some one of the
causes on a second trial is 3 ( p@).
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Ezample. A purse containg 4 colns which are either sovereigus or
shillings; 2 coins are drawn and found to be shillings: if thess are replaced
what is the chance that another drawing will give a soverelem ?

This question may be interpreted in fwo ways, which we shall direuss
separately.

I. If we consider thst all numbers of shillings are & priori equally likely,
we shall have three hypotheses; for (i) all the coine may be shillings, (i)
three of themn may be ghillings, (iif) only two of them may be ghillings.

Here P =P,=P,;

i 1
alao n=1 .‘Pz=§r =5

Hence probability of first hypothesla=1-+ (1 +é + %) = %: &,

probability of second hypothesis = L = ( Lez+ g) - %: Qu
. 1
g (“’é +5-) =%

Therefore the probability that another drawing will give a sovereign

=(Q1><0_)+(Q=><i) + (stg)
§

13,21 5 1
PR TIRI ( Ra T

1
2
probability of third hypot.heais:é

II. If each coin is equally likely to be a shilling or a soversign, by talking
3
the terms in the expansion of (%-&- %) , we see that the chance of four

shillings is fls" of three shillings is T*G- of two shillings is - ; thus

18
1 4 6
=g P BEm
1 1
algo, as before, n=l Py=5, D57
Q_ Qe @y +Qu+Gy 1
Hence BT12°86 . 24 u

Therefora the probability that ancther drawing will give a sovereign
1 2
={Q XOH‘(Qs" i) + (Qa";)
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*474. We shall now shew how the theory of probability may
be applied to estimate the truth of statements attested by wit-
nesses whose credibility is assumed te be known. We shall
suppose that each witness states what be believes to be the truth,
whether his statement is the result of observation, or deduction,
or experiment; so that any mistake or falsehood must be
attributed to errors of judgment and not to wilful deceit.

The class of problems we shall discuss furnishes a useful
intellectual exercise, and although the results cannot be regarded
as of any practical importance, it will be found that they confirm
the verdict of common sense.

¥475, When it is asserted that the probability that a person
speaks the truth is p, it is meant that a large number of state-
ments made by him has been examined, and “that 'is the ratio
of those which are true to the whole number.

*476. Two independent witnesses, .4 and B, whose proba-
bhilities of speaking the truth aré p and p’ respectively, agree in
making a certain statement: what is the probability that the-
statement is truef

Here the observed event is the fact that 4 and 5 make the
same statement. Before the event there are four hypotheses; for
4 and B may both speak truly; or 4 may speak truly, B falsely;
or 4 may speak falsely, B truly; or 4 and & may both speak
falsely. The probabilities of these four hypotheses are

pr, p=p" Pi-p, (1-p){1 -2} respectively.

Hence after the observed event, in which 4 and 7 make the
same statement, the probability that the statement 1s true is to
the probability that it is false as pp’ to {1 - p) (1 -p'}; that
is, the probability that the joint statement iz true is

s

J_.— .
'+ (1-p} (1-2)
Similarty if a third person, whose probability of speaking the
truth is p", makes the same statement, the probubility that the
statement is ftrue is
prp” X
i I-r -7

and so on for any number of persons.
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*477. In the preceding article it has been supposed that we
have no knowledge of the event except the statement made by 4
and B; if we have information from other sources as to the
probability of the truth or falsity of the statement, this must be
taken into account In estimating the probability of the various
hypotheses.

For instance, if 4 and B agree in stating a fact, of which
the a priori probability is P, then we should estinate the pro-
bability of the truth and falsity of the statement by

Ppp" and (1-P){1~p)(1—p’} respectively.

Ezample. There is & raffle with 12 tickets and two prizes of £9 and £3.
A, B, €, whose probabilities of speaking the truth are %, 2, § respectively,
report the result o 1), who holds one ticket. 4 and B asser that he hag
won the £9 prize, and € asserts that he has won the £3 prize; what is D's
expectation?

Three cases are possible; D may have won £9, £3, or nothing, for 4, B,
¢ may all have spoken falsely,

Now with the notation of Art. 472, we have the o priori probabilities

1 1 10
PIEIQ! Pﬁz_) -pszl_.éi .
o 1202 4 113 3 1.1 2 3
80 PTEXgrETay T3 ETE BTy X3 5 500
D99 @ 1
T4 83 T
. 4 1
hence D’s expectation = 57 of £3+ 7 of £3 =£1, 13s. 44,

*478. With respect to the results proved in Art. 478, it
should be noticed that it was assumed that the statement can be
made in two ways only, so that if all the witnesses tell falsehoods
they agree in telling the same falsehood, .

If this is not the case, let ws suppose that ¢ is the chance
that the two witnesses 4 and B will agree in telling the same
falsehood ; then the probahility that the statement iz true is to
the probability that it is false ng pp’ to ¢ (1 - p) (1 - p')

As a general rule, it is extremely Iimprobable that two
independent witnesses will tell the same falsehood, se that ¢ is
usually very small; also it ig obvious that the quantity ¢ becomes
smaller as the number of witnesses becomes greater. These oon-
siderations increase the probability that a statement asserted by
two or more independent witnesses is true, even though the
credibility of each witness is small.
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Example, A speaka truth 3 times out of 4, and B 7 times out of 10; they
both assert that s white ball has been drawn from o hag contsining 6 balls
all of different colours : find the probability of the iruth of the assertion,

There are two hypotheses; (i) their coincident testimony is true, (ii) it is
false,

Here P1=—é, Pg=g;

for in estimating p, we must take into account the chance that 4 and B will
both select the white ball when it has not been drawn ; thie chanee is
1.1 1

TR 0T .
a2

Now the probabilities of the two hypotheses are as Pip, to Pyp,, and

therefore sz 35 to 1; thus the probabilify that the statement ig true iz -5-5) .

*479. The cases we have considered relate to the probability
of the truth of comeurrent testimony; the following 1s a case of
traditionary testimony.

If A states that a certain event took place, having received an
account of its oecurrence or non-oecurrence from B, what is the
probability that the event did take place?

The event happened (1) if they both spoke the truth, (2) if
they both spoke falsely; and the event did not happen if only
one of them spoke the truth. :

Let p, p’ denote the probabilities that A and B speak the
truth ; then the probability that the event did take place is

_ 77+ (1 -p) (1 -2,
and the probability that it did not take place is
2(1-p)+p (1-p)

*480. The solution of the preceding article is that which hag
usually been given in text-books; but it is open to serious oljec-
tions, for the assertion that the given event happened if both 4
and B spoke falsely is not correct except on the supposition that
the statement can be made only in two ways. Moreover,
although it is expressly stated that A receives his account from
2, this cannot generally be taken for granted as it rests on
A’s testimony.
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A full discussion of the different ways of interpreting the
question, and of the different solutions to which they lead, will be
found in the Educational Times Reprint, Vols. xxvi1. and xxxrL

*EXAMPLES. XXXII, ¢,

1. There are four balls in a bag, but it i3 not known of what
colours they are; one ball iy drawn and found to be white: find the
chance that all the balls are white,

2. In a bag there are six balls of unknown colours; three balls
are drawn and found to be black; find the chance that no black ball
is left inn the bag.

3. A letter iz known to have come either from London or Clifton ;
on the postmark only the two consecutive letters ON are legible; what
is the chance that it came from London 7

4, Before a race the chances of three runpers, 4, B, ¢, were
estimated to he proportional t¢ 5, 3, 2; but during the race 4 meets
with an aceident which reduces his chance to one-third, What are now
the regpective chances of B and '?

5. A purse contains # coins of unknown value; a coin drawn at
random is found to be a sovereign; what iz the chance that it is the
only sovereign in the bag?

B. A man has 10 shillings and one of them is known to have two
heads. He takes one at random and tosses it 5 times and it always
falls head : what is the chance that it is the shilling with two headay

7. A bag contains 5 balls of unknown eolour; a ball is drawn
and replaced twice, and in each casa is found to be red: if two balls
ars now drawn simultanecusly find the chance that both are red.

8. A purse contains five coins, each of which may be a shilling
or a Bixpence; two are drawn and found to be shillings: find the prob-
abla value of the remaining coing,

9. A die iy thrown three times, and the sum of the three numbers
thrown is 15: find the chance that the firat throw was a four.

10, A speaks the truth 2 cut of 4 times, and B 5 out of G times:
what ig the prebability that they will contradict each other in stating
the same fact ?
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1. 4 speaks the truth 2 out of 3 times, and B 4 times out of 5.
they agree in the assertion that from a bag containing 6 balls of differept
colours a red ball has been drawn: find the probability that the state.
ment is true.

12, One of a pack of 52 cards has been lost; from the remainder
of the pack twe cards are drawn and sre found to be spades; find the
chance that the missing card is a spade.

13. There is a raffle with 10 tickets and two prizes of value £5
and £1 respectively. A4 holds one ticket and is informed by B that
he has won the £5 prize, while  asserts that he bas won the £1 prige;
what is 4’s expectation, if the credibility of B is denoted by %, and
that of C' by §? : '

14, A purse contains four coins; two coins having been drawn are
found to be sovereignas: find the chance (1) that all the coins are
sovereigos, (2) that if the coins are replaced another drawing will give
a sovereign. :

15, P makes a bet with @ of £8 to £120 that three races will be
won by the three horses 4, B, ¢, against which the betting is 3 to 2,
4 to 1, and 2 to I respectively. The first race having been won by 4,
and it being known that the second race was won either by B, or by
a horse D against which the betting was 2 to 1, find the value of %

expectation

16. From a bag containing n balls, all either white or black, all
numberz of sach being equally likely, a ball is drawn which turns out
to be white; this is replaced, and another ball is drawn, which alse
turns out to be white. If thia ball is replaced, prove that the chance

of the next draw giving a black ball is % n-13{2n 4131,

17. If mn coins have been distributed into m purses, # into each,
find (1) the chance that two apecified coing will be found in the same
purse; and {2} what the chance becomes when » purses have been
examined and found not to contain either of the specified coins.

18. 4, B are two inacourate arithmeticians whose chance of solving
a given question correctly are 3 and &; respectively; if they obtain the
same resulf, and if it is 1000 to 1 agamst their making the same
mistake, find the chance that the result is correct. :

19, Ten witnesses, each of whom makes but one false statement in
gix, agree in asserting that a certain event took place; shew that the
odds are five to one In favour of the truth of their statement, even

although the a priord probehility of the event is as small as 5;3-%'_—1.
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Locsl PrOBABILITY. GEOMETRICAL METHCDS.

*481. The application of Geometry to questions of Pro-
hability requires, in general, the aid of the Integral Caleulus;
there are, however, many easy questlons which can be selved by
Elementary Geometry.

Exgmple 1. From each of two equal lines of lenuth ! a portion is cut
off at random, and removed: what ja tha chance that the sum of
remainders is Jess than 1?

Place the lines parallel to one another, and suppose that after cutting,
the right-hand portions are removed. Then the question is equivalent o
asking what ig the chance that the sum of the right-hand portions is greater
than the sum of the leff-hand porfiona, It is clear that the first sum is
equally likely to be greater or less than the second; thus the required

probability is 3

Cor. Each of two lines is known to be of length not exceeding I: the

chance that thelr sum is not greater than I is 3;

Fzample 2. If three lines ars chosen ab random, prove that they are
just as likely as not to denote the sides of & possible triangle.

Of three lines one must be equal to or greater than each of the other
fwo; denote its length by &.  Then all we know of ihe other two lines is that
the length of each lies between 0 and I. But if each of two lines is known io
be of random length between 0 and I, it is an even chanca that their sum
is greater then [. [Ez. i, Cor.]

Thus the required result follows.
Ezample 3. Three tangents are drawn at random to = given oircle:

shew that the odds ara 3 to 1 against the circle being inseribed in the triangle
formed by them,

7

\7 L

Draw threa randonm: lines P, @, R, in the same plane aa the cirele, and
draw to the circle the six tangents parallel to these lines.

H. H. A. 26

NN
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Then of the 8 friangles so formed it is evident that the ciracle will be
escribed to G and inseribed in 2; and a8 this is true whatever be the original
directions of P, Q, R, the required result follows.

*482  Questions in Probability may sometimes he con-
veniently solved by the aid of co-ordinate Geometry.

Ezample. On a rod of length a+b+¢, lengbhs @, L are measured at
random: find the probability that no point of the measured lines will
coineide.

Let 4B be the Jine, and suppose AP=z and PY=qa; also let a be
measured from P towards B, so that = must be less than b+e. Agaln let
AP =y, PQ’=Db, and suppose P'Q) measured from ¥ towards B, ther y must

be less than ¢ +c.

Now in favonrable cases we must have AP > 4¢}, or else AP> A,
hence Y @B, OF B> HFY. oo e e, (1)

Again for all the cases possible, we must have

z=>0, and <b4e)
| =0, and <adcf T

Take a pair of rectangular axes and make O equal to b+¢, and 0Y

equal to 2 +c.

Draw the line y=q +r, represented by TAIL in the figure; and the line
x = by represented by KR.

. {2).

4 P [ B

Fi

A 4 0 & r o F oV TR Ty

Then YA, KX are each equal to ¢, OM, OT are each equal o a.

‘The conditions {1) are only satisfied by points in the triangles MYL and
HXR, while the conditions (2) sre satistied by any poinis within the rect-
angle 0OX, OY;

». the required chan =&
& xequir o {a+c)(b+e}’

*{83. We shall close this chapter with some Miscellaneous
Examples.

Ezample 1, A box is divided into m equal compartments into which n
ballg are thrown at random; find the probability that there will be P com-
partmente each containing @ balls, ¢ compartments each containing b balls,
r compartments each containing ¢ balls, and go on, where

fa+gb+re+.,...=n
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Since each of the n balls can fall into any one of the # compartments
the total number of cases which can ovcur is m", and these are all equally
likely, To determine the number of favourable cases we must find the
pumber of ways in which the n balls can be divided into p, ¢, 7, ... parcels
contglning a, b, ¢, ... balls respedtively.

First choose any s of tha compartments, whera s stands for p+g+r+ .3

"

pwmnber of ways in which thi b 3 —— = .
the ET © ¥ cl this can be done is s Y

Next subdivide the s compartmenis into groups confalning p, ¢, r ...
goverally; by Art. 147, the number of ways in which this can be done is

bk ‘
i S OTR TR T USRI ) 8

Liestly, distribute the » balls into the compartments, putting & inte each
of the group of p, then b into each of the group of ¢, ¢ into each of the
group of r, and 5o on.  The number of ways in which this can be done is

)
e VU URUPTUOUPION £ %
(DRI

Herce the number of ways in which the balls can be arranged to salbisfy

the required conditions ig given by the produect of the expressions (1), (2), (3)-
Therefore the required probability is

I -
(0 (e A Y e e oy ety

Ezample 2. A bag containg » balls; % drawings are made in suceession,
and the ball on each cecasion is found to be white: find the chance thaf the
next drawing will give a white ball; (i) when the balls are veplaced after
each drawing; (ii} when they are not replaced.

{iy Before the observed event thera are n 41 hypotheses, equally likely;
for the bag may conteir G, 1, 2, 3, ..« white balls. Heunce following the
netation of Art. 471,

Pp=P,=Py=Py=...=P,;

A AN 3Nt nh*t
and Pu=0; 1’}=<;) + P'*'Z(E) y Pu= (E) . R pnz(lﬁ) .

Eence after the observed event,
GRS e
Now the chance that the next drawing will give 2 whita ball= 3:-—; Qs
- R R L ki
thus the requxred chance -;l - __‘1*_:2*?31:7?;11“—" H

and the value of numerator znd denominator may be found by Art. 405.

26—2
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In the particular case when k=2,

rir+i}? n@+1)(@2n+1)
)
_8(nt+l}

T8 (n+1)

. 1
the required chance = {

If » is indefinitely lurge, the chance is equal to the limit, when » iz in-
. L wks
finite, of TR

E+1

and thus the chance is P

{ii} If the balls ure not replaced,
_r r—1 r-3 r—k4+1
oy T R n-k+1’
P, _ =kt r-k+9 ... {r-1)r
2P -k (r—k43) . =Ly
raill

r-&+0)@e-%k+2)...... r~1)r
—k+l (n—k+2) ... {n=-1lin(n+]
The chance that the nex drawing will give a white ball='3 :’;:—z Q,

=g

=(b+1) o j- [Art. 394]

k+l ] L
=(u-—k) {(n—k+1)...... n[n-{-l)fu[f_k) troked) oo (r=Tyr
_ k+1 n-k{n-k+1)....n(n+1)
Tk m-ki+1).....an+l)” E+2
k]

TE+27

which is independent of the pumber of balis in the bag at first.

Ezample 3. A person writes n letters and addresses n envelopes ; if the
lebters are placed in the envelopes at random, whai is the probability that
every letier goe’ wrong?

Let u, denote the number of ways in which all the letters go wrong, and
leb abed ... represent that arrengement io which all the letlers are in their
own envelepes. Now if a in any cther arrangement oceupies the place of an
assigmed letter b, this letter muat either oceupy a's place or some other,

(i Suppose b occupies a’s place. Then the number of ways in which
all the remaining # - 2 letters can be displaced is u,_,, and therefora the
numbers of ways in which & may be displaced by interchange with gome ong
of the other n— 1 latters, and the rest be all displaced is (n—1) %, .
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(i) Suppose a occupies 'y place, and ) does not oceupy a's. Then in
arnangements sabisfying the required conditions, since ¢ is fized in b's place,
the lettera b, ¢, d, ... must be all displaced, which can be done in v, ., ways;
thevefore the xumber of waye in which g occupies the place of anather lefter
but not by interchange with that letter is (n~1) w3

Yo Hy= (n'— 1) (u"n‘-l +uﬂ"2) H
from which, by the method of Art. 444, we find n, — i, ={ - L)% (. —u).
Alge u, =0, u,=1; thus we ﬁ.nally obtain
1

=l - L0
L{[). + [_f

Now the total number of ways In which the n things ean be put in «
places in [n; therefore the required chance is
111 e
RTRTR T R
The problem here involved is of considerable interest, and in
some of its many modifications has maintained a permanent place
in works on the Theory of Probability, It was first discussed

by Montmort, and it was generalised by De Moivre, Euler, and
Laplace.

*484. The subject of Probability is so extensive that it is
impossible here to give more than a sketch of the principal
algebreical methods. An admirable collection of problems, illus-
trating every algebraical process, will be found in Whitworth’s
.Choice and Chance; and the reader who is acquainted with the
Tntegral Caleulus may consult Professor Crofton’s article Probe-
bility in the Emeyclopedia Britannica. A complete account of
the origin and development of the subject is given in Todhunter’s
sttory of the Theory of Probability from the time of Pascal to

that of Laplace.

The practical applications of the theory of Probability to
commercial transactions arebeyond the scope of an elementary
treatise ; for these we may refer to the articles Annwities and
Inswrance in. the Encyclopeedio Britannica.

*EXAMPLES, XXXII. e

1. What are the odds in favour of throwing at least 7 in a single
throw with two dice?

2. In a purse there are b sovereigns and 4 shillings, If they are
drawn out one by one, what ia the chance that they come ouf sovereigns
and shillings alternately, beginning with a sovereign !
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3. If on an average 9 ships out of 10 return safe to port, what
is the chance that out of 5 ships expected at least 3 will arrive?

4. In a Jottery all the tickets are blanks but one; each person
draws a ticket, and retains it: shew that each person has an equal
chance of drawing the prize,

5. One bag contains 5 white and 3 red balls, and a second bag
containg 4 white and 5 red balls. From one of them, chosen at random,
two balls are drawn: find the chance that they are of different colours,

6, Tive persons 4, B, €, D, E throw a die in the order named
until one of them throws an ace: find their relative chances of winning,
supposing the throws to confinue till an ace appears.

. Three squares of a chess board being chosen at random, what
is the chance that two are of one colour and one of ancther ?

8. A person throws two dice, one the common cube, and the other
8 regular tetrahedron, the number on the lowest face being taken in
the case of the tetrahedron; find the average value of the throw, and
compare the chances of throwing 5, 6, 7.

9, Asskillisto Beasl:8;t0¢32s3:2; andto D'sas4: 3:
find the chance that 4 in three trials, one with each person, will suceeed
twice at least.

10. A certain stake is to be won by the first person who throws
an ace with an octahedral die: if there are 4 persons what iz the
chance of the last?

11. Two players 4, B of equal skill are playing a set of games; 4
wants 2 games to complete the get, and B wants 3 games: compare
their chances of winning.

12, A purse containg 3 sovereigns and two shillings: a person
draws one coin in each hand and looks at one of them, which proves
to be a sovereign; shew that the other is equally likely to be a sovereign
or s shilling.

13, A4 and B play for a prize; 4 is to throw a die first, and is to
win if he throws 6. ?f he fails B is to throw, and to win if he throws
6 or §. If he fails 4 iy to throw again and o win with 6 or 5 or 4,
and so on: find the chance of each player.

14. Seven persons draw lots for the occeupancy of the six seats in
a first class railway compartment : find the chance (1) that two specified
persens obtain opposite seats, (2) that they obtain adjacent seats on
the same side.

15. A number consists of 7 digits whose sum is 59; prove that the
chance of its being divizible by 11 is % .

18. Find the chance of throwing 12 in 2 single throw with 3 dice.



PROBABILITY. 407

17. A bag contains 7 tickets marked with the numbers 0,1, 2,...6
respectively. A tieket is drawn 2nd replaced; find the chance that
after 4 drawings the sum of the numbers drawn is 8.

18, There are 10 tickets, 5 of which are blanks, and the others are
marked with the numbers 1, 2, 3, 4, 5: what is the probability of
drawing 10 in three trials, (1) when the tickets are replaced at every
trial, (2) if the tickets are not replaced ?

19, If » integers taken at random are multiplied together, shew
that the chance that the last digit of the productis 1, 3, 7, or 9 is i:‘; ;

—or L Ba_gn
; of its being 5 is o

. . . 48
the chance of its being 2, 4, 6, or 8 is ~ga
. 1OP— B 4n
and of its being 0 i3 -~——§T(-);‘E-+— .
20. A purse contains two sovereigns, two shillings and a metsi
dummy of the same form and size; a person is allowed 1o draw out one
at a time till he draws the dummy : find the value of his expectation.

21. A cerbain sum of money is to be given to the one of three
persons A, B, ¢ who first throws 10 with three dice; supposing them
to throw in the order named until the event happens, prove that their
chances are respectively

By* 56 aund —72
13/ ™ e\

22. Two persons, whose probabilities of speaking the truth are
g and %respectively, assert that & specified ticket has been drawn out

of a bag containing 15 tickets: what is the probability of the truth of
the assertion ?

23. A bag contains ?L—(%tl—) counters, of which one is marked 1,
two are marked 4, three are marked 8, and so on; a person puts in his
hand andd draws out a counter at random, and is fo receive as many
shillings a5 the nnmber marked apon it: find the value of his ex-
pectation.

24, If 10 things are distributed among 3 persons, the chance of

a particular person having more than & of them is 1507 .
= 15683

25, If a rod is marked at random in = points and divided at

those pointa, the chance that none of the parts shall be greater than

l{:h of the rod is L .
% %



408 HIGHER ALGEBRA.

26, Thers are two purses, one containing three sovereigns and a
ghilling, and the other containing three shillings and a sovereign. A coin
is taken from one (it is not known which) and dropped into the other;
and then on drawing a coin from each purse, shey are found to be two
shillings, What are the odds against this happening sgain if twoe more
are drawn, one from each purse?

27. If a triangle Is formed by joining three points taken at random
in the cireumference of a ¢ircle, prove that the odds are 3 to 1 againat
its being acute-angled.

98. Three points are taken 2t random on the circumference of a
circle: what is the chance that the sum of any two of the arcs so
determined is greater than the third?

29, A line is divided at random into three parts, what is the chance
that they form the sides of a possible triangle?

30. Of two purses one originally contained 25 sovereigns, and the
other 10 sovereigns and 15 shillings. One purse js taken by chance
and 4 coing drawn out, which prove to be all sovereigns: what is the
chance that this purse contains only sovereigns, and what s the prob-
able value of the next draw from it}

31. On a straight line of length @ two points are talken at random;
find the chance that the distance between them is greater than .

32 A straight line of length @ is divided ino thres parts by two
points taken at random ; find the chance that no part is greater than 2.

33. If on & straight line of length a+% two lengths #, & are
_measured at random, the charnes that the common part of these lengths

shall not exceed ¢ is Ec% , where ¢ iz less than o or b; also the chance
&

that the smaller length b lies entirely within the larger o is %— .

34 If on & straight line of len%th a+b+c two lengths «, b are
measured at random, the chance of their having a common part which

. {e+ dy

shall not exceed d is TR I’

35. Four passengers, 4, B, {, D), entire strangers to each other, are
travelling in a railway train which contains I first-class, m second-class,
and # third-class compartments, 4 and B are gentlemen whose re-
spective a priori chances of travelling first, second, or third class are
represen in eacl instance by X, p, v; & and D are ladies whase
similar ‘rn'ori chances are each represented by I m, . Prove
that, for all values of X, 4, v {except In the particular case when
Xipiw={:m:a) Aand I are more likely to be found both in the
company of the same lady than each with a different one.

where « s leaa than either ¢ or .



CHAFTER XXXIIL
DETERMINANTS.

485. TaE present chapter is devoted to a brief discussion of
determinants and their more elementary properties. The slight
introductory sketch here given will enable a student to avail
himself of the advantages of determinant notation in Analytical
Geometry, and in some other parts of Higher Mathematics;
fuller information on this branch of Analysis may be obtained
from Dr Salmon’s Lessons Introductory to the Modern Higher
Algebra, and Muir's Theory of Determingnts.

486. Consider the two homogeneous linear equations
ax+by=0,
ax+ by =0;

multiplying the first equation by b, the second hy b, sub-
tracting and dividing by =, we obtain

ab, -ab =0.
This result is sometimes written
ﬂil bl ! = 0‘
a, b,

and the expression on the left is called a determinant. It eonsists
of two rows and two columus, and in its expanded form each
term is the product of two quantities; it is therefore said to be
of the second order.

The letters a,, b,, a,, 3, are called the constituents of the
determinant, and the terms a3, &) are called the elaments,

-1
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487, Since
‘ a, b
| @ b

=ab—ab =06 a

b, b

1 2

it follows that the valus of the determinant is not altered by chang-
ing the rows into columns, end the columns info rows.

488. Apain, it is easily seen that
| & ::—-! b o«
]
i

,al
& 6:1 H as

1]

s b5
.

, and | @ b i=-
i

41

f®, r=e Y

32 9

that is, i we znte‘rc?xaﬂge two rows or fwo columns of the deter-
manant, we oblain a determinant whick differs from ot only in sign,

488, Tet us now consider the homogeneous linear equations
ap+by+en=0,
ax+by+ez=0,
ex+by+cz=0.
By eliminating =, y, 5, we obtain as in Ex. 2, Art. 16,
@, (be.— b)) + b (e —ea) +o,(ah,—ab)=0,

or a, | b, ¢ 1+8, a, +ela b, =0
b, ¢, € @ | 1!&;3 b,
This eliminant is usually written
Pea b ¢ ‘=0,
a, b, o,
a, b, c, |

and the expression on the left being a determinant which consists
of three rows and three columns is called a determinant of the
third order.

490, By a vesrrangement of terms the expanded form of
the above determinant may be written

a’l(b!ca - bacs) + “‘e(z)scz - blcs} + (‘qa(blca_ bzct)!
or al’bg ba’+as|‘ b, b +c.53|b1 6=|;
L e

& S
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hence
‘ @ b e =, a al;
‘ a, b, ¢ ' b, b, b, |
| b, ¢ | & % G |

that is, the value of the determinant iz not altered by changing the
roros into columns, and the colwmmns inlo rows.

491, From the preceding article,

a & ¢ i:a‘ by, ¢ [+a| b, e [+a,[ b ¢ I
% E’e csp b's & -bl ¢ P2 &
a, b, ol
L
=a | b ¢ f~albd e |i+a3 b, e, ‘ ...... {1
| 63 cﬂ 63 c’t | . bi ci‘

Also from Art. 488,

@, b g =al‘ b, ¢, —61[ a, o, [+e|a b, ‘ ()
ai bﬂ c;' 1 b.'.‘ CB l Gs cB 4 a& 63
a, b e

‘We shall now explain a simple method of writing down the
expension of a determinant of the third order, and it should be
noticed that it is immaterial whether we develop it from the first
row or the first column.

From equation {1} we see that the coefficient of any one of
the constituents a,, &,, @, is that determinant of the second order
which is obtained by omitting the row and column in which
it ocecurs. These determinants are called the Minors of the

original determinant, and the left-hand side of equation (1) may
be written

ad —ad, +ad,,
where 4,, 4,, A4, ave the miners of o, o, @, respectively.

Again, from equation (2), the determinant is equal to
ad 0B +el,,

where 4,, B,, /| are the minors of «, &, ¢, respectively.
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492, ‘The determinant &, b, ¢, |
a, b,

as b3 Gﬁ 1

=a (be,—de,) + b {ee,—ca)+cah,~ab)
= b;(asca - a’scs) - (Gsba Gy z) ¢, (bn 3 bea’e);

hence
p e b oo |=— | 5 a o
i a, b e by @, ¢,
: a, b, ¢ b, a, ¢

Thus it appears that if nwo adjacent columns, or rows, of the
determinand are interchamged, the sign of the determzmm ig
changed, but its value remains unaltered.

T£ for the sake of brevity we denote the determinant

a b ¢
a? bﬂ c?
g b ¢

by {abyses), then the result we have just obtained may he written
bla’xcs) == (alascs)
Similarly we may shew that
(cia268> == (al ¥ s) + (a'abscs)‘

493, If two rows or two columns of the determinant are
tdentical the determinant vanishes,

For let I be the value of the determinant, then by inter-
changing two rows or two eclumns we obtain a determinant
whose value is —D; but the determinant is unaltered; hence
D=—D thatis D =0. Thus we have the following equations,

ad —ad +ad =D,
E’1."{| - b!A:+ bs‘iz=0‘
ed —ed, +e4,=0
494, If each constituent in any row, or in any column, 18

mudtiplied by the same facior, then the determinant is multiplied
by that factor.
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For ma, b, o]
may b, ¢,
me, b, ¢

=ma A —ma,. 4 +ma . A,
=mied —ad +ad);
which proves the propositinn.
Cor. If each constituent of one row, or column, is the same

multiple of the corresponding constituent of another row, or
column, the deterininant vanishes.

445,  If each constituent in any row, or column, consists of two
terms, then the determinant can be expressed as the sum of two
other determinants.

Thus we have

a+a, boe | =l b oo |+le b o |;
@, + o, bs Ce ! &, s G %y bs %y
a'a + "’a bs C.’! ] aﬂ 63 CJ 0'3 6?! cﬂ

for the expression on the left
={a,+o)d, —(a+e)d, + (cty + 0} A,
w{ad, - ad, + @A)+ (0 A - o d, +ad);
which proves the proposition,

In like manner if each constituent in any one row, or column,
consists of m terms, the determipant can be expressed as the
sumr of m other determinants.

Similarly, we may shew that
a,+a b+ e
a,+e, L+, ¢

., +a, b+ [

!
g R
O O
Nl
wQ .
+
& 2
B
»
tba ‘-‘q
+
B R
bocl‘—
3] =
w -
+
ao@
W
& X
el is]
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These results may easily be generalised; thus if the con-
stituents of the three columns consist of m, n, p terms respec-
tively, the determinant can be expressed as the sum of map
determinants.

Ezample 1. Shewthat | d+e¢ a~b o !=3abe-a’-0b-g%
e+ b-e b‘
i at+b e—a ¢
The givern determinant
=10 & al-1¥& b a|+|c e ai-1e b al.
¢ b b lc ¢ b e b bl fa ¢ B
§ | ! :
4 ¢ ¢t a a& ¢f{ i b» e ol b oe ¢

Of these four determinants the first thiree vanish, Art. 493; thus the ex-
pression reduces to the last of the four determinants; hence its value

2= — fe (¢® ~ 2} — b (ac - b2} +a (a® - be}}
=3abe - a? - B33,

Ezample 2. Find the value of | 67 19 31 ;.
39 18 14E
81 24 25’
We have
67 19 21 |={10+57 19 2 ,—,‘10 19 21 |+ 57 18 21
39 13 14§ * 0+39 13 14 0 13 14 8% 15 14
3124zﬁ!9+722426|92425 72 94 26
=,10 19 21 ;=110 19 19+2 (=10 19 2|
| 0013 14| 0 13 1341 ‘0131’
| ‘9 o4 95 9 24 2449 g 924 2
=10{13 1|+9)1¢ 2 |=20-63= -3,
24 3| 13 1‘

496. Consider the determinant

| a +pb+ge, b ¢ |;
D, ph,vge, by oo
i‘ aa +]}ba + QCB a.:! cﬂ

as in the Jast article we can shew that it ig equal to
I ¢ b ¢ +‘! phy b e [+ ge B e [;
@ b, ¢, ) tpb b, e ge, b, ¢, |
[ z 63 €y i ! )"'(’a 53 € e, b, ¢

2 a =5
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and the last two of these determinants vanish [Art. 494 Cor.).
Thus we see that the given determinant is equal to a new one whose
first column is obtained by subtracting from the constituents of
the first colummn of the original determinent equimultiples of the
corresponding constituents of the other columns, while the second
and third colunns remain unaltered,

Conversely,
a, by |=| a, +pb+ge b e |;
a, b, ¢ a,+pb,rqe, b, ¢,
a, b, e ! | a,+pb +qe, b, ¢

and what has been here proved with reference to the first column
is equally true for any of the columns or rows; hence it appears
that in reducing a determinant we may replace any one of the
rows or columns by 2 new row or coluum formed in the following
way :

Take the constituents of the row or column to be replaced,
and increase or diminish them by any equimudliples of the cor-

responding constituenis of one or more of the other rows or
columns.

After o little practice it will be found that determinants
may often be quickly simplified by replacing two or more rows

or columns simultaneously: for example, it is easy to see
that

a, + Pbl b] —-gq¢ < 4, b: 4
Ty +pb, bn g% 4 a, b, ¢
a, +pb, b, —ge. ¢ a, &, ¢

i ;
1
i
|

but in any modification of the rule as above enunciated, care
must be taken {o leave one row or column unaltered.

Thus, if on the left-hand side of the last identity the con-
stituents of the third coluinn were replaced by e, +oa,, ¢, + 16,
¢, + #a, respectively, we should have the former wvalue in-
creased by

t @ +pb, b —qe 7q i)
Va, +pb, by—qe, ro,

e, +pb, b,—ge, ra,
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and of the four determinants into which this may be resolved
there is one which does not vanish, namely

pb, —ge, ra, ‘
b, —-qe, T4, .

sz —qc, r’“a:l

Ezample 1. Find the value of ’ 20 26 22
| 26 31 27
163 54 46
The given determinant
= 3 88 -4 [=-3xdx 1 26 1(=-12x; 1 268 1
‘—6 31 —4 | -2 31 1 =3 N5 0'
9 54 -8l 3 54 2 l 1 20!

==-121(1 1 26 —12’—3 5 | =132
0-3 5 b1ogl
0 1 2

[Explanation. Tn the first step of the reduction keep the second column
unsltered; for the first new eolumn diminish each conetituent of the firat
ecolumn bj’ the eorrespondmg consgtitaent of the second; for the third new
colomn diminish each constituent of the third column by the corresponding
constituent of the second. In the second step taks out the factors 3 and
— 4. In the third step keep the first row unaltered ; for the second new row
dirninish the constituents of the seeond by the aorreapondmg ones of the
first; for the third new row diminish the comstituents of the third by twies
the corresponding conatituents of the first. The remsaining steps will be
ensily seen, ]

Ezample 2. Shew that | a-b—-¢ 22 2z [:(a+b+c)3.
2b beec-a
i 2¢ 2¢ c—a-—b[
The given determinant
=|aet+bte a+btc a+db+e |=fat+bic)x! 1 1 1 ‘
b b—c-u 2b 20 b-¢-a 2h
2 Be e85 2e 2g c—a=-> r
=(a+d+ejx} 1 ¢ 0 J
2 —bh-e~u 0] |
e ) —c-u-bt
=(¢t+b+c)xl Y ) ] ?:{a-{-b‘i—c)’.

L0 —¢ a-b|
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[Ezplanation. In the first new determinant the first row is the sum of
the constituents of the three rows of the original determinant, the second
and third rows being unaltered. In the third of the new determinants the
first column remains unaltered, while the second and third eolumns are
obtained by subtracting the constituents of the first column from those of
the second and third respectively. The remaining transformations are suffi-
cieptly obvious.]

497, Before shewing how to express the product of two de-
terminants as a determinant, we shall investigate the value of

aa +08 +ey, ap +bB +ey, an +bB +ey,
ao +08 toy, ea, 08, ey, aa + b8 +ey,
o, + b8, + ey, e, T h S, ey, e, + b8, + “3Ys
From Art. 495, we know that the above determinant can he

expressed as the sum of 27 determinants, of which it will be
sufficient to give the following specimens :

| ‘- X ;

Laoe ap, oo |, | @e b8, e, b | @o ey, 8,1,
e, B8y Gyt &g, beﬁz oYy | ta ey, bgﬁa %
do, g, G, | o b:des CoYs ‘ €8 CaYs baﬁ:s i

these are respectively equal to
aan, | & a o |, afy, | a b« i, o By, N b, 1;
@, @, | o [

T, 47 4

1 ! k] e,

ki

by ey |

the first of which vanishes; similarly it will be found that 21
out of the 27 determinants vanish. The gix determinants that
remain are equal to

12, f',‘ EJ,

o b i
1 1 t
(u'glsgy:j - aiﬁ.ﬂ’g + a‘:ﬁn% - u'.'Bly:! + a"ﬁl}’! - ﬂ:lﬂs?z) x|ty bu ey
. a: iil}:l {lﬂ
that is, a, B, 1, |xla b e |5
@, }8._, Y. o, 3!._; £,
2, ﬂ:; ¥a %, bn “y 'i

henee the given determinant can be expressed as the pr(:fluc:t of
two other deferminants.
498, 7%he produrt of two determingnts @3 o determinand.
Consider the two linear equations
a X +8.X, =_-0']_ __________ )
("._)X; + {IJ__'JX‘.' ES OJ ’
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where X =azx+ aca:g}
X! = B]ml+ ’Bﬂxﬂ
Substituting for Y, and X, in (1), we have
{a,a + blﬁl) ® + (alag + 51{32) @, = O‘l
(ﬂgal + 63181) x, ¥ ({62(1! + bslﬁe) %= o)

In order that equations (3) may simultaneously hold for
values of o, and a, other than zero, we must have
j ao,+b8 aa,+58, l =0 . {4).
P e + 08, e b.B, i
But equations (3) will hold if equations (1} hold, and this
will be the case either if

a, b [=0 .. {5,
a, &, ’

or if X, =0 and X =0;

which last condition requires that
a Bpl=0 . {6).
a‘.’ BS

Hence if equations (5) and (6) hold, equation (4) must also
hold ; and therefore the determinant in (4) must contain as
factors the determinants in (5) and (6); and a consideration of
the dimensions of the determinants shews that the remaining
fuctor of {4) must be numerical ; hence

i a, b a B |=l e +df8 ag+d8, |,
e, b a, B, an, +68, apn, +5.8, |
the numerical factor, by comparing the coefficients of aba B,
on the two sides of the equations, being seen to be unity.
Coz. le, 3 *=1 af+d’ aa,+bd |.

H ] 4
¢, b, | |moe,+bb, af+h,

X

The above method of proof is perfectly general, and holds
whatever be the order of the determinants,

Since the value of a determinant is not altered when we
write the rows as columns, and the columns as rows, the product
of two determinants may be expressed zs z determinant in
several ways; but these will all give the same result on ex-
pansion. '
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Ezample. Shew that 4, -B, &=

lag by oo }%
cdy o By -G 1 a by ooy i
4y By Ol Jay by ol

the capital letters denoting the minors of ihe corresponding amall letters in
the determinent on the night.

Let D, D' denote the determinants on the right and left-hand eides
respectively ; then :
DD'=i ad,-5B,+e,0; agdy — BB, + 0,0, agd, - b B e, 0y
“ oAyt b By 6,0y - apdy+UyBy-a0; - agdyt BBy — 60,
ad; - b Byt Gy tgdy = by By 46,0 gdg ~ DBy 6,0,

=|D 0 D [Art 493]
0D 0
o 0 D]

thus DD’z D3, pud therefore I¥' = D2,

EXAMPLES. XXXITI, a.

Calculate the values of the determinants ;

1 1 1 1. 2,113 16 19|. 3 i‘ 13 3 23
3 37T M 14 17 20 ! 30 7 53
23 26 25 15 18 21 139 9 70
4 |a b g 5. 1 . -y i 6 |1 1 1
A b f -z 1 a 1 I4ax 1
g f el ¥y -z 1 1- 1 14y
7. la-b b—¢ c¢—n 8, | b+e @ i
b—e t—a a-b b e+a &
e—~a -0 b-e ¢ ¢ wtb

If w is one of the imaginary cnbe roots of unity, find the value of
9, 1 o of]. 10, Il 1 o ol
w o 1 e 1

mglwl Ew“ml[

11. Eliminate I, m, n from the equations
al+em+bn=0, d+bntan=0. Htaem+en=0.
and express the result in the simplest form.
27—2
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12. Without expanding the det,erminants, prove that

w boe|=1y g|=|ry3;.
roy oz i.:: (ep‘ g.-
}}; g vl | £ w b e
13. Solve the equations:
Mia e @{=0 (i16-2 11 10 =0
Y om m §11~3.r v 16 |
‘b ox b 7-x 14 13
Prove the following identities:
4 [b4e cte a+dj=2]a b ¢
| g+r rp ptg g ri
Vy+z 242 a+y ¥ ¥
15 |1 « (r9| b—eyle—a) (e b
1 b B
1 o |
16. 1 1 3=(b—n)(c—c.-.}(a—l))(a-i—b+c}‘
a b ¢ [
a B Al
17 (¥ 7 |={- 2) (2= z) (x — ) (yz + 2w 42y
a3t 21
P
18. | —2a. a+d ute ! =3(btay{eta)la+b)
bva -2 b+e
eta e+b =2
19. | (b+ep® a? @ | =%alc{atbdon
B2 (r+a)? 32 i
¢ & {a+1)? |
20. Expressa.qa.dut.ermilmntl0 e b3
f0 oa
b a O}
21. Find the condition that the equation lz+my+n:=0 m‘l‘} he

eatisfied by the three sets of values (¢, b, e)) (ay, &y, ) {2y, by, 05)3
and shew that it is the same a5 the condition that the three equations

a1e+b,_,+a-,#_0 a4 Doy + e2=10,

apt by +ar=0

may be simultanecusly satisfied by [, m, o
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99, Find the value of

) a4+22 ab+on ca~bh | X% by ¢ —b
ab—cx BT botak —-g A &
cat+bh be—ad  SE4AT ‘ b —ae A

23. Provethat| a+ib ct+id | xy a—i8 y-id B
| —ctid a-ib | | —y-i at+B'
where s=4/—1, can be written in the forwm
I 4-iB (-4iD |,
P —(-iD A+iB
hence deduce the following theorem, due to Buler:
The product of two sums each of four squures cun be ecpressed as the
sum of four squeres,

Prove the following identities:

24, ' 1 Detad Uel+aid?

Il ca-bd o+ P

|1 abied a4 od

= —(b—¢) (o —a) (g~ b) (u—el) (b~ d) (c— ).

25, be — g2 oo — bt ah — ¢ .

—betea+ab be—catal  bedeuw—ad

(@+B)(a+e) (be)(Bra) (et (c+b)

=3(b-o)(e—u) (w—b}(e+b+e) (bet et ub).

26, | (@—aF (e-yF (a-2F '

(b2 (-ygF (-
(e-a)f (e-yP (e-2)i

—2¢-g)(e-a)(u-B) =) (-a) (¢ -y

27. Find in the form of a determinaut the coudition that the
expression

wa? 4 8%+ wy* + 2By + 2'ya+ c'af
may be the product of two factors of the first degren iu g, §, 5.

28 Bolve the equation :

wt ke W teabe o g =0,
1w + aby a4 wbee
v bacr o +hex Wt !

expressing the result by meaus of determinants,
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499, The properties of determinants may be usefully em-
ployed in solving simultaneous lnear equations.
Let the equations be
ax+by+ez+d =0,
ax+by+cz+d =0,
ag+by+eg+d, =0;

multiply them by 4,, —4,, A4, respectively and add the results,
4,, 4,, 4, being minors of a,, a,, , in the determinant

D=la & ¢
a’g b! BE
a, b, ¢

The coefficients of ¥ and # vanish in virtue of the relations proved
in Art. 483, and we obtain

(@A ~ad +adyx+(dd —dA4,+d4)=0
Similarly we may shew that
(6,8, -8B, + bx'Bs) ¥+ (d!'B'l ~dB,+ dBBa) =0,
and
(e,C,~c,C,+e02+ (4C, —~d,C, +dC})=0.
Now ad ~ad, +ad =—b B -bB,+bB)
=60, —c0,+e,0,=D;

kence the solution may be written

x ' 4 -y _ z -1
d b (;1—- 4 J d, a ¢| ‘ d e & |a 6 ¢
d, b, e d, n c d, a, &, [ a, b, ¢
d, b ¢ |d, a ¢ d, a b, a, b o«
or more symmetrically '
- —y _ z _ w1
[, ¢ d | |a ¢ d| [a & 4. [a 5, ¢
b, ey dy| o, e d, a, b, d, a, b ¢ [
b, r, d ] a, e d w, by d @, b e

500. Suppose we have the system of four homogeneous linear
equations :
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ax+by+ez+du=0,
ag+by+ex+du=20,
ag+byt+estdu=0
ag+by+cz+du=0

From the last three of these, we have as in the preceding article

fd _ —¥ % —%
R e e o T I
b, o di {a, ¢ d, a, b, d| e b, e
b, ¢, d1 |a, ¢ &, a, b, d, ‘a, b, ¢,

Substituting in the first equation, the eliminant is
a|b, ¢ d 1 =b|a ¢, dl+e |a b d|-d[ad, =0

5, ¢, d, ] a, ¢, ds% w, b d ia,a b, ¢,
b, ¢, d‘l |, e, d‘]' la, b, d, 'a‘bic‘
This may be more concisely written in the form
a b ¢ d |=0;
a b, ¢, d |
| @ b, e, d, ]'
@, b o d !

the expression on the left heing a determinant of the fourth order.

Also we see that the coefficients of 4, b, ¢,, d, taken with
their proper signs are the miners obtained by omitting the row
and coluinn which respectively contain these eonstituents.

501. More generally, if we have n homogenesus linear
equations

ag@, + b, Fed,+ o +kx =0,
age b, +og,+ . +hx =0,
e@ +bw o+ ... +hx =0,

inveolving » unknown quantities «, %, &, ... z,, these quantities

can be eliminated and the result expressed in the form

A I A
wa, b, e, &,
. @ booo..... A
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The ieft-hand member of this equation I8 a determinant which
consists of » rows and » columns, and is called a determinant of
the ™ order.

The diseussion of this more general form of determinant s
beyond the scope of the present work; it will be sufficient here
o remark that the properties which have been established in the
case of determinants of the second and third orders are quite
general, and are capable of being extended to determinants of
any order.

For example, the above determinant of the st order is
equal to

ad,~b B +eC -dD + . +{(~1)7TEL,
or a-]A]-agA,+a3A3—(.«,4A‘+ (=1 A

according as ‘we develop it from the first row or the first column.
Hers the capital letters stand for the minors of the constituents
denoted by the corresponding small letters, and are themselves
determinants of the (m—1)* order. Each of these may be ex-
pressed as the sum of a number of determinants of the (n—2)®
order; and so on; and thus the expanded form of the deter
minant may bé obtained.

Although we may always develop a determinant by means of
the process described above, it is not always the simplest method,
especially when our object is not so much to find the value of
the whole determinant, as-to find the signs of its several
elements.

502. The expanded form of the determinany

a boe |
ia, b, e
o, Z"x €yt

=abe —abe +abe

19:% $7a¢ abie, + abe,— by

a0

and it appears that each element is the produet of three factors,
one taken from each row, and one from each column; also the
signs of half the terms are 4. and of the other half —. The signs
of the several elements may be obtained as follows, The first
clement a b.c,, in which the suffixes follow the arithmetical order,
1s positive ; we shall eall this the leading element; every other
clement may be obtained from it by switally interchanging the
suffftxes, The sign + or — is to be prefixed to any element ae-
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cording as it can be deduced from the leading element by an
even or odd number of permutations of two suffixes ; for instance,
the element ¢ b.c, is obtained by interchanging the suffixes 1 and
3, therefore its sign s negative; the element e ¢, is obtained
by first interchanging the suffixes 1 and 3, and then the suffixes
1 and 2, hence its sign is positive.

503. The determinant whose leading element is e bded, ...
way thus be expressed by the notation

S+abed, ......,

the 3 = placed before the leading element indicating the aggregate
of all the elemenis which ean be obtained from it by suitable
interchanges of suffixes and adjustment of signs.

Sometimes the determinaut is still more simply expressed by
enclosing the leading element within brackets; thus (a,d,0d, ...)
is used as an abbreviation of S xabed, ...

Ezample. In the detexminant {¢,b.cydyey) what sign is io be prefixed to
the element abyc,d.e,?

From the leading element by permuting the suffizes of 2 and d we get
@, bozgdyes; from this by permuting the suffixes of b and ¢ we bave abgrydie;;
by permouting the suffixes of ¢ and 4 we have abyc,dye,; Gnally by permuting
the suffizes of @ and ¢ we obtain the required eﬁcement tbot deeq; and since
we have made four permutations the sign of the elsment is positive.

504. Tf in Art. 501, each of the comstituents &, ¢, ... &, is
equal t0 zero the determinant reduces to a4, ; in other words
it is equal to the product of & and a determinant of the (n - 1)
order, and we easily infer the following general theorem.

If each of the constituents of the first row or column of a
determanant 18 zero except the first, and if this constituent is equal
to m, the determinant i5 equal to m times thai determinant of lower
order which is obtuined by omitting the first column and first
row.

Also since by suitable interchange of rows and columns any
constituent can be brought into the first place, it follows that 1f
any row or column has all its constituents except one egqual to
zero, the determinant can immediately he expressed as a deter-
minant of lower ovder.

This is sometimes uzeful in the reduction and sinplification
of determinants. y
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Fzample. Find the valne of

30 11 20 38
6 % 0 9

I -2 36 3

19 6 17 22! |

Diminish each conetituent of the firat column by twice the corresponding
conetituens in the second column, and each constituent of the fourth column
by three times the correspondmg constitgent in the second colomn, and
we obtain

|8 1L 23 5|,
6 3 0 0
15 -2 36 9
7T 16 17 4

and since the sesond row has three zero constituents this deterrinant

=31 8 20 5|=3;8 20 5|=3|0 1 og_ﬁsis 5 |=9.
15 36 9 |8 13 5 8 19 5]
7 17 4 P71 4 7 17 4

505. The following examples shew artifices which are oc-
casionally useful

Ezample 1. Prove that

fa b ¢ d)=(a+dt+ect+dija—b+e-d)(a-b—c+d){a+b-c-d)
b a d ¢
¢ d a b
d ¢ b e
By adding together all the rows we ses that a + 4+ c+d iz a factor of the
determinant; by adding together the firat and third rows and sublracting
from the resul the sum of the second and fourth rows we ees that
a—-b+e~-dis also a factor; elmilarly it can be shewn that a-d—c+d and
a+b—e— d are factors; the remaining factor is numerical, and, from a com-
parison of the terms Involving a*on each side, is easily seen to be unity;
hepoe we have the required result.
Ezxample 2. Prove that
11 11 =({a-b)(a—¢)(a~dy(b-c)(b-d)(c—-d).
e b ¢ A
a? ¥ T ot
R R
The given determinsant vanishes when b=n, for then the first and second
columns are identical; hence a - is & factor of the deferminant [Aré, 514).
Similarly each of the expressions a-c¢, a—d, b—~¢, b—d, c—d ia z factor of
the determinant; the determinant being of gix dimensions, the remsiving
factor must be numerical ; and, from a comparison of the terms involving
be*d* on each gide, it is essily seen to be unity; hence we obtain the required
result.
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EXAMPLES. XXXII b.

Caleulate the values of the determinants:

1 11 1 1], 2 T 13 10 6
1 2 3 4 5 9 5 4
1 3 6 10 8 12 11 7
1 4 10 20 4 10 & 3
3 a 1 1 1 4, I 0 1 1 1
1l a1 1 1 bd4e o a
1 T a 1 1 b e a b
111 e 1 ¢ ¢ atb '
5. 3 21 4 i 6. | 1+a 1 1 1
15 26 2 14 l 1 1+% 1 1
16 19 3 171 ! I 1+c 1
33 39 8 38 I 1 1 1 14d
7. 0 x % = |. 8. ] » ¥ z
z 0 z ¥ - 0 ¢ b :
¥ 2 0 =z -y -c G «a
¢ ¥y & 0 -z -8 —a 0
9, la & e a
& a+d  addbie at+b+ot+d
a 2a+b 3a+2+c  4a$3b+2c+d
& 3a+d Ba+3b+ec 10g+6b4 3ct+d

10. If o is one of the imaginary cube roots of unity, shew that
the square of

1 o wf o)== 1 1 -2 1];
o o ot 1 17 1 1 -2
o @ 1 o -2 1 1 1
10}3 1 & ef 1 -2 1 1

hence shew that the value of the determinant on the left is 3./— 2.

. If (F2—be)w+ (ch—fy) y+ by —hf) 2=0,
(ek —fg) =+ (g —ca)y + (af — gh) 2=0,
Do — A+ {af — gy + (8 — ab) z=0,

shaw thaf ube + 2fgh —uf? - bg? — ch*=0.
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Solve the equations:
12, s+ y+ z=1,
axt by+ =k,

aZx + Wy +ciz=I

14
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18, az+ by+ es=4
abr+ by + =AY,
abr + %y + Pr= A5,

4 u=l,

r+ ¥+
ar+ By + e+ du=4k,
or + B4y +- Hrtdtu=F,
ar+ By + P+ dlu=4I%

15. Prove that

btec—a—d be—ad Delatdy—ad(b+c) |
eta-b—d ca-bdd calb+d)-bd(cta}
a+b—v-d ab—ed able+d)—cd{atb)|
==2(b—c)(c—a)(a—b) (u—d}{b—d}(c—d).
16. Prove that
a®? af-(b-ef b
. b W-le—a¥f oo
2 d-fa-br abl

={b—c) (v~ u) (a— &) (a+b+c) (o2 + b2+ 62,

17, Shew that

e b ¢ d e fl=14d B O},
Ff a b e d e ¢ 4 B
je fab ¢ d 13041.
|d ¢ f & b ¢
le d e f ab
.bc dr:fc:.!

where A=a2—d£+2w-2§f,

B=e* —F* +2ac— 2df,
O=¢ — 24 2ne—20d.

18. If a determinant is of the = order, and if the constituents
of its first, second, third, ...2™ rows are the first » figurate numbers of
the first, second, third, _..3* orders, shew that its value is unity.



CHAPTER XXXIV.
MISCELLANEOUS THEOREMS AND EXAMPLES.

506. Wz shall begin this chapter with some remarks on the
permanence of algebraical form, briefly reviewing the fundamental
laws which have been established in the course of the work.

507. In the exposition of algebraical prineciples we proceed
analytically : at the outset we do not lay down new names and
new ideas, Lut we begin from our knowledge of abstract
Arithmetic; we prove certain laws of operation which are capable
of verification in every particular case, and the general theory of
these operations constitutes the science of Algebra.

Hence it is usual to speak of Arithmetical Algebra and Sym-
bolical Algebra, and to make a distinetion between them. In the
former we define our symbols in a sense arithmetically intelligible,
and thence deduce fundamental laws of operation; in the latter
we assume the laws of Arithmetical Algebra to De true in all
cases, whatever the nature of the symbels may be, and so find
out what meaning must be atbached to the symbols in order that
they may obey these laws., Thus gradually, as we transcend the
Himits of ordinary Arithmetic, new results spring up, new lan-
guage has to be employed, and interpretations given to symbols
which were not contemplated in the original definitions. At the
same time, from the way in which the general laws of Algebra
are established, we are assured of their permanence and uni-
versality, even when they are applied to quantities not arithmeti-
cally intelligible.

508. Confining our attention to positive integral values of
the symbols, the following laws are ensily established from a priori
arithmetical definitions. -
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I. The Law of Commutation, which we enunciate as follows:
(i) Additions und subtractions may be made in any order.
Thus atb—c=a—c+bob—ct+a.
(i) Multiplications and divisions may be mads in any order.
Thus axb=bxa;
axbxe=bxexa=axcxb; and so on.
ehre=axbre={a+c)xb=(b-clxa

II. The Law of Distribution, which we enunciate as follows:

Myltiplications and divisions may be distributed over additions
and sublractions,

Thus {a—b+¢) m=am—bm+em,
(@~8) (¢~ d)=ac—ad - be+ bd.
[Bee Elementary Algebra, Avts. 38, 34.]

And since division is the reverse of multiplication, the distri-
butive law for division requires no separate diseussion.

IITI. The Laws of Indices.

(i) a* xat=a*t",
at - at=a""".
(i1) (a"‘ =™,

[See Elementary Algebra, Art. 233 to 235.]

These laws are laid down as fundamental to our subject, having
been proved on the supposition that the symbols employed are
positive and integral, and that they are restricted in such a way
that the operations above indicated are arithmetically intelligible.
If these conditions do not hold, by the principles of Symbolical
Algebra we assume the laws of Arithmetical Algebra to be true
in every case and accept the interpretetion to which this assump-
tion leads us. By this course we sre assured that the laws of
Algebraical operation are self-consistent, and that they include in
their generality the particular cases of ordinary Arithmetic.

509. From the law of commutation we deduce the rules
for the removal and insertion of brackets [ Elemeniary dlgebra,
Arts, 21, 22]; and by the aid of these rules we establish the law



MISCELLANEOUS THEOREMS AND EXAMPLES. 431

of distribution as in Art. 35. For example, it is proved that
fa~d)(c—d)=ac—ad —be+bd,

with the restriction that o, b, ¢, d are positive integers, and «
greater than b, and ¢ greater than 4. Now it is the provineé of
Bymbaolical Algebra to interpret results like this when all restric-
tions are removed. Hence by putting e =0 and ¢=0, we obtain
(-8 x(—d)=bd, or the product of two negative gquantities 1is
positive. Again by putting 5=0 and ¢=0, wa obtain ¢ (—d)=—nd,
or the product of two quaniities of opposite signs is negative.

We are thus led to the Rule of Signs as a direct consequence
of the law of distribution, and henceforth the rule of signs is
included in our fundamental laws of operation.

510. For the way in which the fundamental laws are applied
to esteblish the properties of algebraical fractions, the reader is
referred to Chapters xix., xx1., and Xx11. of the Elementary Algebra ;
it will there be seen that symbeols and operations to which we
cannot give any & priori definition are always Interpreted so as
to make them conform to the laws of Arithmetical Algebra,

511. The laws of indices are fully discussed in Chapter xxx.
of the Elementary dlgebra. "When m and n are positive integers
and m > n, we prove directly from the definition of an index that

am x a«':a“+'; an':__ an = au-u; (ane)l =&-l.

- We then assume the first of these to be true when the indices

are free from all restriction, and in this way we determine mean-
ings for symbols to which our original definition does not apply.

»
The interpretations for af, a°, ¢~ thus derived from the first law
are found to be in strict confermity with the other iwo laws;
and henceforth the laws of indices can he applied consistently and
with perfect generality.

512. In Chapter virr we defined the symbol ¢ or /=1 as
obeving the relation +*=—1, From this definition, and by
making ¢ subject to the general laws of Algebra we are ensbled
to discuss the properties of expressions of the form a +4b, in
which resl and imaginary quantities are combined. Such forms
are sometimes called compler numbers, and it will be seen by
reference to Articles 92 to 105 that if we perform on a complen
number the operations of addition, subtraction, multiplication,
and division, the result is in general itself & complex number,
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Also since every rational function involves no operations but
those above meutioned, it follows that a rational function of a
complex nummber ix in general a complex number.

"Expressions of the formx o™, log(z+iy) cannot he fully
treated without Trigonometry; but by the aid of De Moivre's
theorem, it is easy to shew that such funciions can be reduced to
complex numbers of the form A +45.

The expression £** is of course included in the more general
form ™™, but another mode of treating it is worthy of attention.

We have seen in Art. 220 that
. N N
e*=Lim (1 + —) , wheu % is infinite,
1

x being any real quantity; the guantity ¢ may be similarly
defined by means of the equation

et = Lim (1 + i—?'?-/) , when = is infinite,

2 and y being any real quantities.

The development of the theory of complex numbers will be
found fully discussed in Chapters x. and xr of Schlimileh's
Handbuch der algebraischen Analysis,

513. Wae shall now give some theorems and examples tllus-
trating methods which will often be found useful in proving
identities, and in the Theory of Equations.

514.  To find the remainder when gny rationel integral function
of x is divided by x —a.

Tet f{x) denote any rational integral function of x; divide
J(x) by 2 — & until a remainder is obtained which does not involve
z; let @ be the quotient, and & the remainder ; then

Jixy=0(x—a)+ R

Since K does not involye x it will remain unaltered whatever
value we give to @; put w=¢, then

Flay=0x0+ 1N,
now @ is finite for finite values of x, hence

R=fla).
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Cor. If f{2) is exactly divisible by x— «, then B =0, that is
F(a)=0; hence ¥f o rational tntegral function of x vanishes when
X =a, 1 15 divistdle by x — a.

515. The proposition contained in the preceding article is so
useful that we give another proof of it which has the advantage
of exhibiting the form of the quotient.

Suppose that the function is of » dimensions, and let it be
denoted by

PPt A p et T R g T L,
then the quotient will be of »n - 1 dimensions ; denote it by
g T HgE T gl T g,

let £ be the remainder not containing 2 ; then

=2 r—3

P HpE T Fp T+ p T
s(m—a) (g v g g T+ g )+ R

Multiplying out and equating the coefficients of like powers of =,
we have

Fo=%;
4 =My =P OV ¢, =g, + P,
QR_Q’Q:&:PS’ or qs__'a’QI-i—pn;

thus each successive coeflicient in the quotient is formed by
multiplying by « the coefficient last formed, and adding the
next coefficient in the dividend. The process of finding the
successive terms of the quotient and the remainder may be
arranged thus:
Po P Py Py Puoa P
gy T, M, 4,y 0,

4% ¢ & O T L

Thus  H=agq,  +p,=a{8g,  + P} F 1= oo
=pa"+p o T pa T+ L+ p,

If the divisor is 2+« the same method can be used, only in
this case the multiplier is - a. .

H. H. A 28
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Ezample. Fiad the quotient snd remainder when 327 — a8+ 31t + 2154 5
is divided by z + 2.

Here the multiplier is -2, and we have
3 -1 0 3 00 21 5
-6 14 -8 -6 12 -2 &
3 -7 4 Td-6 1273711
Thus the yuoticnt iz 3.8 — 704 14t 4 805 ~ G+ 120 - 3, and the re-
inainder is 11,

516. In the preceding example the work has been abridged
by writing down ouly the coefficients of the several terms, zero
coefficients being used to represent terms correspond ing to powers
of a which are absent. This method of Detucked Coeffisients may
frequently be used to save labour in elementary algebraical
processes, particularly when the functions we are dealing with
are rational and integral. The following is another illustration.

Erample, Divide 8% — 821 -85+ 207 33r+ 26 by 23 - 247 - 45 4 8,
1+2+4-8)3-8- 5426-03426(3-2+3

3+6+12-24
T3y 74 2-33
-2~ 4- 8+16
T3 6-17+98
3+ 6+12-24

- 5+ 2
Tuus the quotient is 32® — 2+ 3 and the remainder is — 5.4 2.

It should be noticed that in writing down the divisor, the sign of every
tertn ereept the first has been changed; ihis enables us to replace the process
of subtraction by that of addition at each sueceessive stage of the work.

517. Thework may be still further abridged by the following
arrangement, which is known as Horner’s JMethod of Synthetic
DHvision.

1]3-8— 5426-3343
30 Gii2-o4

it i 8416
_8} 6+12- 94

3-2+ 34 0= 5+ 2

[{Explanation. The column of figures to the left of ths vertiesl line
consistd of the coeftieients of the divisor, the rign of each alter the first being
changed; the second horizontal liue is obtmined Ly nmnltiplying 2, 4, - 8
by 3, the first term of the quotient. We then add the termis in the seeond
column to the right of the vertieal line; this gives — 2, which iz the eoeff-
cient of the second trxm of the quotient. With the coefficient thna obtained
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we form the next horizontal line, and add the terms in the third eslumn;
this gives 3, which is the coefficient of the third term of the guotient.

By adding up the other columns we get the coefficients of the ferms in
tha remsainder. )

Ezompla, Divide 6u’+ 5u’h — 8a50% — Bul# — 6ub* by 2u® 4 Jeb = b¥
to four terms in the guotient.

26+5-8-6-0
-3 94043
0 6+0-2;
1 3+00 ~ 1
! [ 1240-4
55 140-4 +115074

Thus the guotient is 3a®-2ub—-0—4a~4, and 1107 - fe 207 iz the
remainder.

Here we add tbe terms in the severa! colurans as before, but each sum has
to be divided by 2, the fivet coefficient im the divisor, When the requisite
number of terms in the gquotient has been so obtained, the remainder is

found by merely adding up the rest of the columps, and setting down the
results without division.

The student may easily verify this rule by working the division by
detached coefficients.

518. The principle of Art. 514 Is often useful in proving
algebraical identities; but before giving any illustrations of it
we shall make some remarks upon Symmetrical and Adlternating
Funetions.

A funetion is said to be symmetrical with respect to its varni-
ables when its value is unaltered by the interchange of any pair
of them ; thus z+y+2 bet+ea+ab o +4°*+2°—zyz are sym-
metrical functions of the first, second, and third degrees respec-
tively.

Tt is worthy of notice that the only symmetrical function of
the first degree in 2, %, ~ is of the form A (& + ¥ +z), wherve H is
independent: of = %, 5.

519. It easily follows from the definition that the sum,
difference, product, and quotient of any two syinnetrical expres-
sions mmust alse be symmetrical expressions. The recognition of
this principle is of great use in checking the accuracy of alge-
braical work, and in somne cases enables us to dispense with much
of the labour of calenlation.

For examnple, we know that the expansion of (= + y +z)" must
be a howogeneous funetion of three dimensions, and thervefore
of the form o 4+ " + 2% + 4 (& + 297 + ¥ + = + 2w+ ) + By,
where . and B arve quantities independent of «, g, 2.

25—32
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Put 2=0, then A = 3, being the coefficient of z*y in the ex-
pansion of (x + y)*.
Put w=y=z=1, and we get 37=3+(3 x ()+8; whence
B=6,
Thus (= + y + =)’
=o'+ ¥+ 2+ 3%y + 3wyt + By's + Byt + 3w + 32t + Guyz.

530. A function is said to be alternating with respect to its
variables, when its sige but not its value is altered by the inter-
change of any pair of them. Thus 2~y and

& {b~c)+¥{c—a)+c {a—-1)

are alternating functions,

It is evident that there can be no linear alternating function
involving more than two variables, and also that the product of
a symmetrical function and an alternating function must be an
alternating function. ’

521. Symmetrical and alternating functions may be con-
cisely denoted by writing down one of the terms and prefixing
the symbel Z; thus Za stands for the sum of all the terms of which
a is the type, Sab stands for the sum of all the terms of which
ab is the type; and so on. For instance, if the function involves
four letters a, b, ¢, 4,

Za=a+b+c+d;
Sab=aht+act+ad +be+bd +ed;
and 50 on.
Simitarly if the funection involves three letters a, 4, ¢,
e (b —c)=a*{b—c) + B{e—a) + *{a~b);
Za’bc = a®bo + b'on + cfab;
and 0 on.

It should be noticed that when there are three letters involved
2% does not consist of three terms, but of six: thus

Ya'h = a’h + a®c + ¥e + Pa + fa + b

The symbol ¥ may also be used to jmply summation with
regard to two or move sets of letters; thus

Zyr(b~c)=yz (b—c) + 2w e — ) +ux {n—~b).
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522, The above notation enables us to express In an abridged
form the products and powers of symmetrical expressions: thus

{t+ b+ ¢)* = Za" + 834D + Babde ;
(o +b+c+dY=Za" + 3%a’h + 6Zabe;
{a-tb+ef=Za"+ 430" + 636" + 13Zabe;

S % Faf= e+ Za®h.

Ezample 1. Trove that
(2+0)°—a® - VP=5ab(a+b}{a®+ab+ 7).

Denocte the expression on the left by E; then F is a function of a which
vanishes when a=0; hence # ig a factor of F ; similarly b 1s a factor of E.
Again E vanishes when a= -, that ir a+ 0 is a factor of E; and therefore
E contzine ab (a+b) a8 & factor., The remaining factor musi be of two

dimensions, and, since it i3 symmetrical with respect to @ and b, it must he
of the form Aa®+ Bab + 4%?%; thug

(a+b)°~ ¥~ P =ab (a+b) (da®+ Bab + AbY),
where 4 and B are independent of & and 3.
Putting a=1, b=1, we have 15=24 + B;
putting a=2 d=-1, wehave 153=54 - 28;
whenea 4 =5, B=§; and thug the required resulf at once follows.

Ezample 2. Tind the factors of
(B34.83) (b= €) + (6 +6) (¢ — )+ (0 4% (a— 8.

Denote the expression by E; then E is a function of ¢ which vanishes
when e=25, and therefors contains z - b as 2 factor [Art. 514]. Bimilarly it
contains the factors b-¢ and ¢ - 2; thus E contains b-c){c-aj{a-58)asa
factor, '

Algo since B ig of the fourth degree the remaining factor must be of the
first degree; end sinee it is a symmetrical funetion of e, b, ¢, it musi be of
the form M {e+5+¢). [Arl. 518];

s E=M{B-cl{c-al{a-b)la+b+e).
To cbtain M we may give to a, b, ¢ any valoer that we find most een-

venient; thus by putting 4=0, b=1, ¢ =2, we find =1, and we have the
required resumlt,

Ezrample 3. Shew that
fxty+a—ad~y - D=8y +o){z+x} (z+3) (L +12+ 2+ yz+ 22+ ay).

Denote the expression on the left by E; then E vanishes when y= -z,
and therefore y+2z is a factor of E; similarly z+ 2z end z+y are factors;
therefore E contains (y+ ) {z4z) (z +y) as & factor. Also sinee E is of the
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fifth degres the remaijning factor is of the sccond degree, and, sinee it is
symmetrical in z, ¥, 2, it must be of the form

AP+ + N+ B gz + 2+ ay).
Pot z=y=2z=1; thus 10=4+35;
put =2, y=1, z=0; thus 35 =54 + 2B,
whence A=B=5,
and we have the reguired result.
523. We collect here for reference a list of identities which

are useful in the transformation of algebraical expressions; many
of these have occurred in Chap. xx1x. of the Elementary Algebra.

Bhe(b—ec)=—(b~¢){¢c—a){a-1).

Zof(b—cy=—(b-c)(c—a) (a—-b}).

Ba (b —eY=(b-c)le—a)(a-b)

Z0*(b-c)=—{b-c)(c—a)(a~B) (a+b+a).
&+ b+~ Sabe={a+b+e¢) (@ + b+ " be —ca —ab).

This identity may be given in another form,
@+ 8+ e - 3abc=% {a+b+e){{b—c) + (c~a) + (e~ b}

b—elP+{e—a)+{a-0P=8(b—c)(c~a){a——5)
(atb+ef—a®—b0—=3F+e} (e+a){e+d).
She(b+e) + 2abc= (b +c){c+a){a+ b).
Sa*(b+¢) + 2abe= (b +c){c+a)(a + D).
{m+ b +e){be+catab)—abe=(b+c)(c+ea)(a+d)
Wt + 2t + 207 — ot ~ Bt - *

={e+db+c){b+tec—a)(c+a—-b}{a+b-q).

EXAMPLES. XXXIV. a.
N 1. Tind the remainder when 325 +112 + 9022 — 192 + 53 is divided
¥ 24 B,
2 Tind the equation connecting « and & in order that
Szt — Rl tax+b
may be divisible by 2~ 2,
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3. Find the yuotient and remainder when
a8 = Gt 928~ 62 — 185+ 138 1s divided by a? - 3042,
4 Tind o in order that 4% — 7o+ 5 may be 2 factor of
a2t -4t 192 - Bl + 12 e,
5. Expand r"?5.r‘Ith‘3+_1._': 8 in descending powers of 2 to four
terms, and find the remainder.
Find the factors of
6. a(b—-cP+ble—uP+ol{u-iE
7. et (B =)+ (P~ a4 ef (a7
8, latd+e)~-(bre—aP-(cta-bP-la+h-ct
9, ad-cl+ble-al+ei{n—b48abe
10, a(bt-ey 4 bt —aty et = 5.
11, ({(beca+all® — B — o — 383,
19, {atb+oy (bt —{eta) - (et bt +at+itteh
13. (a+b4c¥—(btc-af~(eta—B-{a+h—ap.
14, (w—aRd-cP+{w—bP(r—aP+{v— )3 (a—b)
Prove the follewing identities :
15, Z{h+e~2ul=3{b4c—2a) (c4w—20) e+ - 2}

a(b—c)? b(e—a)? efe—57

18 v ma-n o hica T - oe-o
2 2b 2 | (b-c){c—qa] _(q.:_'b)
b T i Tera T e R (v o) @t

=a+Db+e

17

18. Fel(b+c)-2ad—2abe=(b+o—-a)(etu-b) {etb-c)

a3 (b+o) B (o + ) S {ct+8)
@-ba—o G- f-w G-a)E-b

20, 43(b-jbte~2wP=93(b-(b+c—a)

=fe+ cetab,

2L (y+zP(z+ 2P (r+yP=Z2z(r+ 2P+ Byl — Ly
S (ab — ) (ac — b = (She) (The ~ .

22.
93, ahe(Za)® — (Ehef=abeZad~ BhB = (0 = be) (17 —oar) (8 — )
24, Sih—ePbte—2u)=1 henee deduce Z{f -y} {B+y—2a32=0
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25, B+eP+{etaP+ e+ -3+ (et o) (u+d)
=2 (@ + &+ ¢* - Bubo),

26, fa=bte—u y=c+u-0, 2=u+b-¢ shew that

2B+ y2 32— Bryr=4 (a¥+ 5+ 2 - abe),
87. Prove that the value of &®+1°+c*—3ade is unaltered if we
- substitute s—a, s— &, s—¢ for a, b, ¢ respectively, where

3s=2(at+b+0)

Find the value of

@ b 2
2. (a—b)(a—c)(x-—a}+(b—c)(b—a}(x—b)+(c—a)(c-—b)(x—c)'
at-bt=c* b —¢t— ol 2 — o — B
GB(a-0 Bot-a T e-ae=h"
30 tat+p)latq) (d+p)(o+eq) {etp)letq)
" {e-b)le—glata) " (B-o)(b-a) (b+2) " e-a)le—B)(c+a)’
3. 3 bed 32 3 o

(@-bdjla-)la—d)’ (@-b){a—c)(a~d)’
33, I x+y+2=s and ayz=p3 shew that

) E-DE-)ED EEH-

-]

MiscELLANEOUS IDENTITIES.

524. Many identities can be readily established by making
use of the properties of the cube roots of unity; as usual these
will be denoted by 1, w, o’

FEzample. Shew that
{e+y) —2f =3 =Toy {x+y) &2 tay+ )%

The expression, K, on the leff vapishes when z=0, y=0, z+y=0;
henee it must pontain zy {2 +y) as & factor,

Putting z=wy, we have
E={l+wf - =i}¥={{-AF - -1} ¥
=(- - w-11y7=0;
hence E contains r - wy as a fagtor; and similarly we may shew that it eon-
teing # — oy as a factor; that is, ¥ iz divisible by
{r— wy) {z ~ ¥y, or 22+ zy+y
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Further, E being of seven, and «y {z+1) (o® +ay +3% of five dimensions,

the remaining factor must be of the form . (&% + y*) -+ Fey; thas
{4+ 57— — F =ay (2+y) (2 +wy +%) (7 + Bay + Ay°).

Putting =1, y=1, we have 21 =24 + B;
patting  x2=2,y=-1, wo have 81=34-28,
whence A=7, B=T;

o (Yl - 2~y =Tay (@4 y) Bty + )

525. We know from elementary Algebra that
E+b 46 —Babe=(a+b+o) (e + 8+t —bec—ca—ab),
also we have seen in Ex, 3, Art. 110, that
o+ 8%+ ¢ — bo —oa — ab = {a + wb + v'c) (@ + u'b + ac);
hence & + b* + ¢ — 3abe can be resolved into three linear factors;
thns
a® + B+ ¢ - 3abe = (a+ b +c) (& + wb + v'e) (¢ + w'b + wc).

Ezample. Shew that the produoet of
@+ B +c5 - Babe and 25 +35+ 2 —Bzys
cen be put into the form A3+ B3+ C%-34BC. '
" The product  ={&+b+ 0} (@ + b+ w%) (a+wh + we)
x {4y +2) (B4 oy +wie) (o4 wdy +wi)
By taking these aix factors in the paira (a+b+0) {z +y+:2);
{a+wh+ote) {2+ o'y +wz); and {a+ b+ we) (24 @y + 0%),
we obfain the three partial products
A+B+0, A+wB+wiC, 4+*B+wC,
where A =ozr4by+cz, B=bz+cy+az, U=cxay+bz,
Thus the product={4 + B+ C) (4 +»B + 0*C) (4 + B +wl)
=A%+ B34 (° - B4BC.

526. In order to find the values of expressions involving
@, b, ¢ when these quentities are connected by the equation
@+ b+ ¢=0, we might employ the substitution

a=h+k b=uvh+o'k c=ohtok

If however the expressions involve @, b, ¢ symmetrically the
method exhibited in the fsllowing example is preferable.
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Ezample. If a+b+¢=0, shew that
6 (a® 0+ %) =5 (@ + B+ ) (o + 1047

‘We have identically
{1+ az) (L+bz) (L+ox}=1+pz+qzi+rad,

where p=a+b+te, g=betceatad, r=abe.
Hence, using the condition given,
(1 +az) (L+bz) (14 ex) =1+ ga® f-r2®.
Taking logarithms and equating the coefficlents of 2%, we have
(:—¥1 {am+ 0% 4e™) = ct‘)efﬁcieu‘t of ¥ in the expansion of log {1+ g2®+m¥)
=coefficient of x*in  {ga®+re’} - % (gx® 1:7;‘3}2_;. é {get + 727 — ..

By putting n=2, 3, 5 we oblain

ae_'_b-s_{_cs a3+bs+c" a.5+b"’+c-"
- 5 =q, 3 =7, = = —gr;
S+t 48 @b+ A+ b+t
whernee ———— = 3 . 5 s
o =3

and the required reenlt at once follows.

If a=f -7, b=y-0, c=a—p@, the given condition is satlsfied; hence
we have identically for all values of a, 5, ¥
6 {(8 -7+ (y—al+{e~£)%

=5 {{B-vP (v~ af+ (@B {B- W ly-af +x-§)%

that ik,
B-vPriy—al +la-fF=53 -7 (y-a) &~ E*+F +7" - By -va-af);
compare Ex. 3, Art. 522,

EXAMPLES., XXXIV. b.
1. If{a+btcP=a®+8+c% shew that when n is a positive
integer (a+b+c)2n+l=aﬂa+l L il pinv]

9. Shew that

(@a+wdtoef+{a+obtecf=2a—-b-c)(2b—c—a} (@ -a-b).

3. Bhew that (x+p)"—a*—g* is divisible by ay(e2+ay+3%, if
= is an odd positive integer not a multiple of 3., ¥ Y+

4 Shew that
e (hz = ey + 5% (e — a2+ 3 {ay — bl =Babe (b — ey) (cw — az) (ay — bx),
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5. Find the value of
(b=} (e =} (6= BY+ (b~ w6) (¢ — ) (@ — wb) (b — ot} (2 - w%a) {a— ob).

6, Shew that (a?+ 62+c2 bo— oo — ab) (=2 +_;-+32 ¥z~ e —xy)
may be put into the form A4 B2+ 02— BO—C4 - 4L

7. Shew that (¢® + b+ 0% (22 + 2y + 5° } can be put inte the form
A2+ A B+ B, and find the values of 4 and B

Shew that _
8. S(a?+2bc) - B(a®+ 2bc) (D' + 20a) (67 + 2ab) = (ad+ B + ¢t — Babe)?.
9, S(a®-be)*- 3(a®~ be) (82— ca) (c® — ad)={a®+ 1+ & — Jabc2.

10, (@ +2%4+c1P 42 (beteatabl® -3 (a4 B2+ ) (be + ca+ab)?

={a? + B4 * - Babe)®

If @+ b+ e=0, prove the identities in questions 11—17.

11, 2{at 4B+ ety =(al+ B3+t

12, b+ 85+ ef= — Babe (bet et

13, &S +b54Lo0=3a2b%2— 2 (be+ca+ ab)t

14, 3(a®+ 58+ c%) (P + B+ 5)=5 (a7 + P+ c°) (o +b4+cY).

5, CHULE B aaBid

T 5 2

b—¢ c-a o-b a b ¢
16. (T* 5 +T)(a;c+a‘_a+m) =9 .
17, (Bte+cta+ a®b — Bubc) (bed 4 ca? + ab® - 3abe)
=(be+ca-t ab)®+ 2702052
18, 25{(y—~aV +(a—a)f + oy Hy — P+ (e - 2P+ (-3}
=21 {y—zF+ (2 - 2P+ {2— 1;)5}2.
19. {y - +{z—2P+{z-yf* - 54y~ c— 2P (z~z)*
=2 (y+z-22)* g+ - 29)% (x4 y - R

20, (b—-cft{e—a¥+{n-b¥-3(b-c2(c—al(a-5bp
=2{?+ P+ - be—ca—ab)

ol (b—e) +{r—af +{a—bY
=T (h—c}(e—a) e~} {a+ P+ 2 —be—ca—ab)l
23. If a+b+e=0, and x4y +2z=0, shew that
4 (ax + by c2)* - 3 {ax 4+ by +c2) (a"‘+b9+c3)(x2+y + 2%
~2(b—c){e—a) (a-b}(y - 2) (= - ) {x - y) = Sdaberpe.
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If s+ b4+ ¢+ d=0, shew that
P+P+E+db w3+b3+<:3+af3 af 4+ 014 5 P

B s s s =

94, (aF+ B3+ 4 d92 =9 (bed + cda+dab + abe)?
=9 (be — ad) (ca — bd) (wh— od).

25, If2s—a+b+cand ol=ab+ B2+ 3, prove that
3 (s~ by {s—e) (e?— @'} + Sabes = (82 — ¢} (48 + ¥},

26. Shew that ::3+fiz.-2y+3mg;3 — 3PP+ (13 + By 4 3oty — 3
=27zy (v +y) (z* + 2y +y*P
aﬁ
b} {@—c}la—d)
=+ b4t dl + ab b ac+ad + be + bd +od.

28. Resolve into factors
26522 - (a®+ B+ &) abe+- B + Ba? + b’

27, Shew that 3 @

ELIMINATION.

597. In Chapter xxX1r. we have seen that the eliminant of
s system of linear equations may at once be written down in the
form of a determinant. General methods of elimination ap-
plicable to equations of any degree will be found discussed in
treatises On the Theory of Equations; in particular we may refer
the student to Chapters 1v. and vi. of Dr Salmon’s Lessons Intro-
ductory to the Modern Higher Algebre, and to Chap. xii of
Burnside and Panton's Theory of Equuiions,

These methods, though theoretically complete, are not always
the most convenient in practice, We shall therefore only give a
. brief explanation of the general theory, and shall then illustrate
by examples some methods of elimination that are more practi-
cally useful.

598. Let us first consider the elimination of one unknown
quantity between two equations.

Denote the equations by f(z)=0 and ¢ (x)=0, and suppose
that, if necessary, the equations have been reduced to a form in
which f{z) and ¢ (x) represent rational integral functions of =.
Since these two functions vanish simultaneously there must bhe
some value of z which satisfies both the given equations; hence
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the eliminant expresses the condition that must hold between the
coefficients in ovder that the equations may have a common root.

Suppose that 2=u, x=8, &=y,... are the roots of f(x)=0,
then one at least of the quantities ¢ (a), {8), ¢ (v), ...... must
be equal to zero; hence the eliminant is

${a)d (B (y)..... =

The expression on the left is a symmetrical function of the
reots of the equation /() =0, and its value can be found by the
methods explained in treatises on the Theory of Equations.

529. We shall now explain three general methods of elimiina-
tion: it will be sufficient for our purpose to take a simple
example, but it will be seen that in each case the process is
applicable to equations of any degree,

The principle illustrated in the following example is due to
Euler.

Ewample, Eliminate z between the equations
asd+briteon+d=0, fet+gs+h=0.

Let x4+ & be the factor corresponding to the root common to both equa-
tiong, and suppose that .

axt+ bz +cw + d=(x+ k) {as® + Lz -+ m),
snd JE gzt h=(z+ k) (fz+n),
k, I, 1, n being unknown quentitics.
From these equations, we have identically
(az®+bat + ez +d) (fz 4 n) = (az®+ L +m) (fz* + 95+ A).
Eqguating coefficients of like powsars of z, we obtain
Fi —antayg— =0,
gl fia— b+ ak - ef =0,
W+ gm—en —df=0,
b — dn ={.

From these linsar equations by eliminating the unknown quantities I, m,
n, we obtain the deternzinant
[ f 0 a ag-¥bf =0
g F b ahb-¢f !
'kog ¢ ~df |
(o rha o !
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530, The eliminant of the equations F(x)=0, ¢ {x) =0 can
be very easily expressed as a determinant by Sylvester's Dialytic
Method of Elimination. We shall take the same example as
before.

Erample. Eliminate r between the eguations
ad+bxtter+d=0, fxtpr+h=0.

Multiply the first equation by x, and the second equation by z and £* in
-fueccession: we thus have § equations between which we can eliminate the 4
quantities x4, 2%, 1%, r regarded as distinct veriables. The equations are

ar+ bx*+ cx+d=0,
urt+bx¥+ ext+ds =0,
Jel+gr+ N =0,

T egrt+hes =0,

Frtg gt x? =0
Hence the climinant is
0 a b ¢ d)=0
a b ¢ 40
00 f h
0 f g &k Q
tfy »w B 0 01

§31. The principle of the following method is due to Bezout;
it has the advantage of expressing the result as a determinant of
lower order than either of the detecminants obtained by the pre-
ceding methods. "We shall choose the same example as before,
and give Cauchy’s mode of condusting the elimination.

Ezqmple. Eliminate r between the equations
ad + b +ox+ed =0, fr4 gz +h=0.

Frone these equations, we have

i _bx*tresid
f ogatths
az+h_crtd
Jr+g” Az
whence lag ~ by a4 {ah— cfy o —df==(,
and lak —cf) 22+ (Ll — cg - df) z —dg =10,

Combining these two equations with

JE g h=t,
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and regarding z* and = as distinct vaviables, we obtain for fhe eliminan

| f g Boj=0

‘ g~ by ah —¢ef - df
i ak-ef Dh—eg-df -dg

532, If we have two equations of the form ¢, {&, ») =0,
b, (= yy=0, then » may be eliminated Ly any of the methods
already explained; in this case the eliminant will e a function of «.

If we lLave three cquations of the form
¢'1 ('r}‘:! ¥s ::) = 0) ‘;’2 (:U) A "‘}) = 0! qbu ('“‘:: U z) = 01

by eliminating z between the first and second equations, and then
between the first and third, we obfain two equations of the form

¥, (e, ) =0, y)=0.
If we eliminate y from these equabions we have a resalt of

the form f(z) =0,

By reasoning in this manner it follows that we can eliminate
# variables between » + 1 equations.

533. The general methods of elimination already explained
way occasionally be employed with advantage, but the eliminants
so obtained are rarely in a simple form, and it will often happen
that the equations themselves suggest some special mode of
elimination. This will be illustrated in the following examples,

Ezample 1. Eliminate I, m betwsen the equations
lrymy=a, my-ly=b, Pimi=1
By sguaring the firet two equations snd adding,
Priemiet+miyd 4+ Pyt =at+ 07,
that is, f124m®) (224 y2) = a® 4 b4
hence the eliminant is 2 +yt=ad R

1f 1=cos #, m=sin &, the third equation is satisfied identicully; that is,
the eliminant of

xeos 0 ysinf=a, rsinf-yconf=h

is i yt=att it
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448
Ezample 3. Eliminate z, y, # belween the equations
yit2t=ayz, P+i=bar, &+ y =cay.

& Lf
S -
&

z
z oy

We have ¥ 2og L
z ¥ ]

by multiplying together these three equationa we obtain,
EY T S S .
2+§_'§ 1-_2____ +z_“ z x.g.}.g’r—:abc;
& Tyt Tt g x
hence T {a® =)+ (B2 - B) + (¢ - 2) =abc;
S gt B e —d=ale,

Ezample 3. Eliminate z, y between the equations
2f—yf=pz - gy, dey=gz+py, #+y’=1

Multiplying the first equation by x, and the recond by y, we obtain
4 8zyt=p (+y');

hence, by the third equation,

o =%+ 3xy”.
Similarly g=3z% + 3%
Thus pra=0+y) p~q=E-y¥%
o prot+ (p- o= a4yt -yp
=2 (22 + %%

o (prad+(p-i=2

Ezample 4. Eliminate z, y, 2 between the equations

g_fza:f £=b, E._!;;:c’
: ¥ z 2z ¥ =z
We have atbro WAy E - ralel o)
TyE
_y=E-a -y
Yz
I we changs the sign of x, the signs of b and ¢ are changed, while the
gign of & remaimes unaltered;
henea a#b._f,-:w}_
¥z
Similarly. a_c_m=(w
» x:?z 3

and e a-bh=@ERErE (@0
r.yz
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o (@b +0) (o) (cha-Byfasd—c)=- L {"';“yﬂi""("g‘ﬁ"'

I ETANCE AL AN
T\ oy \x 2} \y =
=— a2b%>,

o 22T 2e%al 4 2at - gt - B - et e = 0.

EXAMPLES. XXXIV. c.

1. Eliminate m from the equations
miz—my+a=0, my+xr=0,
2. Eliminate m, » from the equations
miz—my+a=0, nlr-—nyte=0, mrt+l=0
3. Eliminate m, » between the equations
my—ny=a(m?—n%), nzxtmy=2emn, wF+ai=l
4. ZEliminate p, g, r from the equations
prgtr=0, algr+rp+p)=2¢-z,
apgr =y, gr=-1
5. Eliminate x from the equations
az® - 2afr 4120, a®+2°-3ar=0
6. Eliminate m from the equations
y+mr=a{li+m), my-z=a(l-m)
7. Eliminate =, ¥, z from the equations
yr=o?, zz=b0% ay=c, P2+yi4+l=d2
8. Eliminate p, ¢ from the equations
w{p+q=y, p-g=t1+pg, wpy=a
9, Eliminate x, y from the equations
r—y=a, F-P=0 -p=d
10. Eliminate #, ¥ from the equations
x—l-y= a, F4gt=l% 2r4if=ch
11. Eliminate 2, ¥, z, « from the equations
Z=by + e +du, y=cz+dutaz,
z=dutoart+by, w=ar+byte
12. Eliminste =z, y, z from the eqﬁations
z+y+2=0, 24+yit+f=d
Dpyt 3=, 2StyS+d=dl
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13. Eliminate &, 7, 5 from the equations

TrY L2 Ti¥ L i AN E AT RN
y+z+x_a’- z+.r+y b (y+z)(z+x)<x+y

14, Eliminate x, y, z from the equations

#y+a) _ P leta) 2ety) sz |
a2 B’ @& abe

15. Eliminate 2, y from the equations

4{atryt)=ar+bdy, 2(t-pti=axr-by, zy=a
16. Eliminate %, ¥, 2 from the equations

(g +2=Aalyz, (e+zP=40%z, (z+yP=4szy.
17. Eliminate z, y, z from the equations

(Fty-2)(e-y+n=ayz (F+z-2){y-2+z)=bz,
(gt y)ls—x+y)=coy.
18. ZEliminate r, y from the equations
y=a, =z(wty)=>b, Zrty=c
19, Shew that (a+5+¢)~4(b+c){c+a){a+b) + 5abe=0
is the eliminant of
art byt e=ar 4 by + o=yr+ oz +ay=0.

20. Eliminate #, ¥ from the equations

¢w+w=m+@=£%=a

21, Shew that B+ dal + ol = b atbic
ia the eliminant of

axtyz=be, bytar=ca, c+ay=ab, zye=abe
22. Eliminate x, y, & from
Py trR=r ey =1,
E(x—P)=§ -9 (=)
23. Employ Bezout’s method to eliminate z, ¥ from
ax® + bty +ery’+ Ay’ =0, a'F+Valy+dayE-dyS=0,



CHAPTER XXXV,

THEQRY OF EQUATIONS,

534. Ix Chap. ix. we have established certain relations be-
tween the roots and the coefficients of quadratic equations. We
shall now investigate similar relations which hold in the case of
equations of the n™ degree, and we shall then discuss some of the
more elementary properties in the general theory of equations,

535. Let pa+pa+p8 T+, +p,_@x+p, be a rational
integral functicn of # of » dimensions, and let us denote it by
J(x); then f(x)=10 is the general type of a rattonal integral equa-
tion of the n' degree. Dividing throughout by »,, we see that
without any loss of generality we may take

e epat T tp TR L +p _2+p,=0
as the type of a rational integral equation of any degree.

TUnless otherwise stated the coefficients p,, p,,... p, will always
be supposed rational,

536. Any value of = which makes f(x) vanish is called a
root of the equation f(x) = 0.

In Art. 514 it was proved that when fiz) is divided by
x -~ @, the remainder is f(a); hence if f(») iz divisible by 2—a
without remainder, « ig a root of the equation f(x)=0.

537. We shall assume that every equation of the form 7{x}=0
has & root, real or imaginary. The proof of this proposition will
be found in treatises on the Theory of Eguations; it is beyond
the range of the present work.

292
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538. FEvery equation of the n'* degree has n rovts, and no more,
Denote the given equation by /() = 0, where

Fl@)=pa +pa +p e L +p_.
The equation f(z}=0 has a root, real or imaginary; let this be
denoted by «,; then f{x) is divisible by & — &, so that
flo)=(z-a)¢ ()
where ¢ (z) is & rational integral function of »—1 dimensions.
Again, the equation ¢, {x)=0 has a root, real or imaginary; let
this be denoted by a,; then o, (z} is divisible by z—a,_, so that
¢'I (x) - (x C&s) qbs (x):

where ¢, (x) is a rational integral function of # — 2 dimensions,

Thus Jx) = (x—a,) (£ —a,) $,(2)

Proceeding in this way, we obtain, as in Art. 309,

S @ =plx—a)@—a)...... (x—al)

Hence the equation f(x) =0 has = roots, since f(x) vanishes
when z has any of the values &, a,, ,,...a,_.

Also the equation cannot have more than »n roots; for if « has
any value different from any of the quantities @, @, &, ...z, all
the factors on the right are different from zero, and therefore
J (x} cannot vanish for that value of o

In the above investigation some of the quantities a, 2., 4,,...a,
may be equal; in this case, however, we shall suppose that the
equation has still » roots, although these are not all different.

539. To nvestigate the relations between the vroots omd the
coefficients in any equation.
Let us dencte the equation hy

& +pet T e p ™ '+p"1m+pu=0,
and the roots by g, b, ¢,...... k; then we have identically
L rpa T pd T L +p, D,

=(x~a)(z-3) {x—)...... (- k);
hence, with the notation of Art. 163, we have

@ +p TN p AT L p et p,
=2t =S+ 82— L (1S (SIS
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Equating coeflicients of like powers of » in this identity,
- p, =48 =sum of the roots;

p,=8, =sum of the products of the roots taken two at 2
time;

- p,=:5, =sum of the products of the roots taken three at a
time ;
(= 1), =S =product of the roots.
1f the coefficient of 2® is p , then on dividing each term by
1, the equation becomes

Dt pLagrms gy Pam g Pay
s 2 b, Py

and, with the notation of Art. 521, we have

3

Sa=—2, Sab=Ds, Sabo=-B, . abo.. ke (—1)Pn
pD pl] ] pﬂ
Ezample I. Bolve the equations
shay+az=al, x+by +=bY atey+e=d

From these equations we ses that a, b, ¢ are the valves of ¢ which
satisfy the cuhic equation

-z yt— =0
hence z=a+b+¢, y= —{be+ea+ab), x=abs.

Example 2. If a, b, ¢ are the roots of the equation £2 + pt? + pus + py=0,
form the equation whose roots are a2, b2, ¢

The raquired equation is (¥ -a?) (y - %) (y - 6% =0,

or {22 — a%) (2® - 1) {z® - e?) =0, if y=2%;

that is, fr—a){z-Dj{z-e){z+a){z+b) (2 +c)=0.
Bus (z-a) (- {(r-c) =2t g2+ pam+ Py

hence {z+a) (£+58) (c+e) =2 — e + D2 - py-

Thus the required equation is
(2?4 oyt 4 D+ Py} (2% —D12® + poz — Py} =0,
or (= + 2% - (pya” +3,)2=0,
or oS+ (2p, - p 1) 2+ (psF - 2pypy) 27 - =04
and if we replace 2 by y, we cbiain
¥+ -2 o+ (27 - 2op) v - =0,
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540. The student might suppose thut the relations estublished
in the preceding article would enable him to solve any proposed
equation; for the number of the relations is equal to the number
of the roots. A little reflection will shew that is this not the
case ; for suppose we eliminate any n-1 of the quantities
a, b, o, ... k and so obtain an equation to determine the remaining
one; then since these quantities are involved symmetrically in
each of the equations, 1t is clear that we shall always obtain an
equation having the same coefficients; this equation is therefore
the original equation with some one of the roots g, &, ¢,... &k sub-
stituted for o

Let us take for example the equation
P+pxt+putp,=0;
snd let a, &, ¢ be the roots; then
at+dbte=—p,
ab+ac+be= p,
abec=—p,.
Muisiply these equations by a® —a, 1 respectively and add; thus
@t = P;a'g_Pga' — P32
that is, @+pa+patp,=0,
which is the original equation with g in the place of 2.

The above process of elimination is quite general, and is
applicable to equations of any degree,

541. If two or more of the roots of an equation are con-
nected by an assigned relation, the properties proved in Art, 539
will sometimes enable us to obtain the complete solution.

Ezemple 1. Sclve the equation 453249423z +18=0, baving given
that the roota are in aritbmeatical progression.

Denote the roots by a ~ 5, a, ¢ +b; then the sum of the roots is 3z; the
som of the products of the roota two at a time is 307 - 12; and the produoet
of the roots is a {a®—3%}; henoe wa have the equations

23 ]
da=6, 3d'-b’=T, af{ad-= —E:

from the first egmation we find a=2, and from the second b=¢—25- , and
sioee these values satisfy the third, the three equations are consistent,
&

Thus the reots s.re—é, 2, 3
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Ezample 2. Bolve the equation 2422 — 1423 - 68z + 45=0, one root heing
double another.

Denote the roots by a, 2a, &; then we have

3a+b=1zé, a8 4 3gb= —%, 2a*h = - %5
From the first two equations, we obiain
§g?- 22 -3=0;
- az?} or —% and b= —-g or %g
It will be found on irial that the values a= ~%, b:?—g do not satisfy

the third equation 2a% = - 1;, hence we are restricted to the values

3 5
ﬂ'—;{, b=—-§.
i 3 5
Thus the roots are 3, 5> —3-

542. Although we may not be able to find the roots of an
equation, we can make use of the relations proved in Art. 539
to determine the values of symmetrical functions of the roots.

Exampie 1. Find the sum of the squares and of the cubes of the rvots
of the egquation & —pai+gqr-r=0

Denote the roots by a, b, ¢; then
a+bt+e=p, betcatob=gq.
Now al+ 03 cB=(a b+ )22 {be+catal)
=p%—2q.
Again, substitute , b, ¢ for £ in the given equation end sdd; thus
B+ +F-p(al+8+eN) + g (a+d+c) ~3r=0;
v a® P F=p (- 2g) - pg + 3y
=p% - 3pq +3r.
Ezxample 2. Ifa, b, ¢, d are the roots of

4+ prd+gritrzta=0,
find the valua of Za%.

We have G+dtetd=—p oo (1L
abtac+ad+betbdred=¢ i (2],
abet+abd+acddbod= -1 {3}-
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From these equations we have
~pg=Za’h+ 3 (abe + abd + acd + bed)
=Zaih - 3r;

s Zath=3r -

EXAMPLES., XXXV, a.

TForm the equation whose roots are
2 .
L 3, g, +£3, 2. 0,0, 2 9 -3 —3.
3 2,2 -2 -2,0, 5 4 a+b, a-b -a+h —a-b

Solve the equations :
5. 24— 162748642 - 1762 + 105 =0, two roots being 1 and 7.
6. 441628~ 9r— 36=0, the sum of two of the roots being zere.
7. 4r*+4202%- 28z 6=0, two of the roots being equal.
8. 37%-262%+527r-2¢=0, the roots being in geometrical pro-
gression.
9. 22%—2%-- 222 24=0, two of the roots being in the ratio of
3:4
10. 244744642492~ 9=0, oue root being double ancther of the
roots.
11, Bz*—22%-272°+ 62+ 9=0, two of the rocts being equal but
opposite in sign.
12. 5443 - 38927262+ 16=0, the roots being in geometrical pre-
gression,
13, 327%-4Br*422r-3=0), the roots being in arithmetical pro-
gression.
14 62t -29294 4002 — T2 —19=0, the product of two of the roots
being 2.
15. 2%~ 223 21:%492¢ +40=0, the roots being in arithmetical
progression.

16. 2Va* - 19527 + 40447 — 5302+ 192=0, the roots being in geo-
metrical progression,

17. 1828+ 814+ 1212+ 60=0, one root being half the sum of the
other two.
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18. If @, b, ¢ are the roots of the equation £° - pa?-+ gz —r=90, find
the value of

1 1 1

1 1l 1
W atpts @ matEat o

a'£
19. If «, b, ¢ are the roots of ¥+ qu4r=0, find the value of
(1) (b—elt+{c—e)?+(u~bR (2) G+ +{eta) 1+(at )L
20. Find the suwin of the squares and of the cubes of the roots of
2+ grttre+s=0.
21, Find the sum of the fourth powers of the roots of
B4gr+r=0.
543. In an equation with real cogfficients imayinary vools
OCCUT TR PEITS,

Suppose that f{x)=10 is an equation with real coefiicients,
and suppose that it has an imaginary root @ +ib; we shall shew
that & — b is also a root.

The factor of f{x} corresponding to these two roots is
{(w—a—ib) (& —a+1b), or {w—a)® +b"
Let f(x) be divided by (x—a)*+5°; denote the quotient by
Q, and the remainder, if any, by Bz + &’; then
Fl@)=Q{lx —af +5°} + Be+ &'
In this identity put @ = a +14b, then f(x)= 0 by hypothesis; also
(x—a) + 8 =0; hence R{a +ib) + B =0.
Equating to zero the real and imaginary partts,
Ro+ R'=0, Rb=0;
end & by hypothesis is not zero,
o B=0 and B =0.
Hence f () is exactly divisible by (= — )’ + 8", that is, by
(x—a- ib)(z ~a+id);
hence =@ —4b is also a root,
544. In the preceding article we have seen that if the equa-

tion f'(x) = 0 has a pair of imaginary roots ¢ = ib, then (z - ay + &
is a factor of the expression f (x).
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Buppose that e+, ¢=4d, ex1iy,... are the imaginary roots
of the equation f(x}=0, and that ¢ (x) is the produet of the
quadratic factors corresponding to these imaginary roots; then

¢ () = {(z—a)f + Bz - o)"+ "Hix — )’ + ¢ ..
Now each of these factors is positive for every real value of x;
hence ¢ (@} is always positive for real values of a.

545. Asin Art 543 we may shew that in an equation with
rational coefficients, surd roots enter in pairs; that is, if @ + /b is
a root then e~ /b is also a root.

Ezample 1, 8olve the equation 6zf— 1328 — 368~ z + 3 =0, having given
that one roob is 2 - /3.

Sinee 2-,/3 is a root, we koow that 2+,/8 is also & root, 2and corre-
sponding to this pair of roots we have the quadratic factor 22 -4z +1.

Also 62 - 1825 -38e2-x+8=(2% -4 +1) (B2 + Llz +3);
hence the other rools are obtained from
627+ e+ 3=0, or (3z+1) (2x+3)=0;

13
-3 =3 2403, 2- 4.

thus the rocts are
Ezample . Form the equalion of the fourth degres with raticnal
coefficients, one of whose roots is \/2 4./ - &
Here we must have o/2+./=3, \/2-+/"3 as one pair of roots, and
— 2+, 73, - J2 - /=3 as ancther pair.

Corresponding to the first pair we have the quadratis factor £ 2, /2 4 5,
and corresponding to the second pair we have the quadratic factor

2+ 2, f2n b,
Thus the reqaired equation is
{554 25/8% +5) (21— 2 /22 +5}=0,

or (2 +3)2-822=0,
or 7t 23+ 25 =0.
Ezample 3. Shew that the equation
t 2
has no imaginary roots,

If possible let p+ig be a root; then p—ig is also a root. Substitute
these valnes for z and subtract the firat result from the second; thus

?{ 4 + B + o o & }*0-
(P-o)f+g " (p-6p+a* (p-e)+¢ 7 T {p-AP+e¥ T 7
which iz impossible unless =0,
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546. To determine the nature of some of the roots of an
equation it is not always necessary to solve it; for instance, the
truth of the following statements will be readily admitted.

() Tf the coefficients are all positive, the equation has no
positive root; thus the equation 2"+ &° + 3z + 1 = 0 cannot have a
positive root.

(ii} If the coefficients of the even powers of x are all of one
sign, and the coefficients of the odd powers are all of the contrary
sign, the equation has no negative root; thus the equation

-2+t -3+ Tx—-5 =0
cannct have a negative root.

(i1i) If the equation contains only even powers of x and the
coeflicients are all of the same sign, the equation has no real
root; thus the equation 2x°+ 32°+2°+7 =0 cannot have = real
root,

(iv) If the equation contains only odd powers of z, and the
coefficients are all of the same sign, the equation has no real root
except &x=0; thus the equation &’ + 22" + 32 + £ =0 has no real
root except x=0.

All the foregoing results are included in the theorem of the
next article, which is known as Descartes’ Bule of Signs.

547. An equation f(x)=0 cannot have more positive roois
than there arve changes of sign in £(x), and cannot have more
negative roots than there are changes of sign in f (- x).

Buppose that the signs of the terms in a polynomial are
++4 — — 4 — = ~+ — +—; we shall shew that if this polynomial
is multiplied by a binomial whose signs are + —, there will be at
least one more change of sign in the product than in the original
pelynommial.

Writing down only the signs of the terms in the multiplica-
tion, we have

b —— ek —— - — 4~
+_
t+——t———F—+—

—— -+ -4
+E—Ft+t—zFzF+—+—-+
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Hence we see that in the product

(i} an ambiguity replaces each continuation of sign in the
original polynomial;

(i} the signs before and after an ambiguity or set of am-
biguities are unlike;

(iii) a change of sign is introduced at the end.

Let us take the most unfavourable case and suppose that all
the ambiguities are replaced by continuations; from (ii) we see
that the number of changes of sign will be the same whether we
tuke the upper or the lower signs; let us take the upper; thuos
the number of changes of sign cannot be less than in

Fhmmh—— — 4+ — 4 — 4,
and this series of signs is the same as in the original polynomial
with an additional change of sign at the end.

If then we suppose the factors corresponding to the negative
and imaginary roots to be already multiplied together, each factor
2 — & corresponding to a positive root introduces at least one
change of sign; therefore no equation can have more positive
roots than it has changes of sign.

Again, the roots of the equation /{— #)=0 are equal to those
of f{x)=0 but opposite to them in sign; therefors the negative
roots of f{z)=0 are the positive roots of F{-—2)=0; but the
number of these positive roots cannot exceed the number of
changes of sign in f{- 2); that is, the number of negative roots
of f{x)=0 cannot exceed, the number of changes of sign in -
S

Example. Consider the equation 28 + 5% - 23 + T+ 2=10.

Here there are two changes of sign, therefore there are at most two
positive roots.

Again f (- z)= 284+ 8294+ 23— 77+ 2, and here there are three changes
of mign, therefore the given equation has at most three negative roots, and
therefore it must have af least four imaginary roots.

EXAMPLES. XXXV. b,
Selve the equations :

1 3 -102%+ 427 - £ —6=0, one root being }—4-“—;‘/-:—3 .
2. 6x'-132%9-3522— 2+ 3=0, one root being 2 ~./2.

3. at+4f 4527+ 22— 2=0, one root being ~1+J—_1-
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4. 4484622+ 4o+ 5=0, one root being J— 1.
5. Solve the eguation #%- 248+ 02 -15=0, one rouvt being
A/3 aud apother 1 -2,/ - 1.

Form the equation of lowest dimensions with rational coefficients,
one of whose roots is

6. J3+.-2 7. - =L+4/5
8 -.Ji-J-2 9. JoH2./6.

10, Form the equation whose roots are =4./3, 542,/ 1.

11. Form the equation whose roots are 1+ ,/ 9,91 /-4

12, Form the equation of the eighth degree with rational co-
efficients one of whose roots is J2+./8+ /- 1.

13. Find the nature of the roots of the equation
3rt 41254+ 5x — 4=0,

14, Shew that the equation 277 —2*+42°—5=0 has at least four
imaginary roots.
15. What may be inferred respecting the roots of the equation
- 420428 — 2 - 3=01
16. Find the least possible number of imaginary roots of the
equatwn Pttt a4 1=0. .

17. Find the condition that 2*— pz®+ qx —r =0 may have
(1) two roots equal but of opposite sign;
{2) the roots in geometrical progression,

18. If the roots of the equation .z:"+33x3+gr2+? w+8=0 are in
arithmetical progression, shew that p 'f2q+8r =0; and if they are
in geometrica ?prngresmon shew ’t.hat. p?s—

19. If the roots of the equation #» ~1=0 are 1, ¢, 8, ,..., shew that
Q=) (1=8) (L =y).. =10 :
If a, B, ¢ are the roots of the equation a3—pa®+go~r=0, find the
value of

20, Zalflt 21, (b+cH{etw)(ntb)

2. 3(0+3). 2. Sath

If a2, b, ¢, d are the roots of a4+ 028+ g2+ rez+s=10, find the value of
2. Sabe. 25. Sat
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548. To find the value of £{x +h), when I(x) is a rational
indegral function of x.
Lot f(&) =pa" + P~ +p@ "+ .. +p,_ @ +5,; then
flo+hy=ple+ by +p {Z+2) " +p(z+8)"+ .0
+p, o (E+h) +p,
Expanding each term and arranging the result in ascending
powers of %, we have
P& Ap@ T HpE I P, Bhp,
+himpa e (n- ) paF + (=2 p T+ o p, )

+ ;%i [n{n-1)p,a"*+{n-1)(n- NDpa"™+...+2p, )

. E—;{n (n=1) (- 2)...8.1p,}.
This result is usually written in the form
A, LS A
Slerh)y=f(x)+ b (x) + @f (&) + @j @+ + IEJ"‘(&:),

and the functions £ (=), f"(x), F"(x),... are called the firss,
second, third, ... derived functions of f'(x).

The student who knows the elements of the Differential Cal:
culus will see that the above expansion of f(e+7%) is only a
particular case of Taylor's Theorem; the functions f'(x), /" (x},
F7{x) may therefore be written down at once by the ordinax
rules for differentiation: thus to obtain /(=) from f{z) we multiply
each term in f(x) by the index of & in that term and then
diminish the index by unity.

Similarly by successive differentiations we obtain /”(x),
ff?t(m)’ en
By writing - 4 in the place of A, we have
'’ k’ ' ;&3 Lt n ;An "
Se=By=f) =@+ 5w =g /@) e 1) S ).

The function f{x+#) is evidently symmetrieal with respect
to = and 4; hence :

+ 2 .., X
Je+hy=F{i) +zf (ﬁ)+@f (}%?*"-A-*Ef (k).
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Here the expressions f (&), /' (&), /"(%), ... denote the results
obtained by writing A in the place of x in the successive derived

functions f(x), S (), /" {x),....
EBzample. If f{x}=2z%- 28— 22%4 5z - 1, find the value of f{z +3}.
Eere Fley=28r—z% - 257455 - 1, so that fF(3)=131;
S {z)=82"- 822~ 4z 4.5, and f'(3) =182;

'g—éf—]_—.12$2—3$—-2, and %ﬁ]zgnr;

ffff (x)- ff(f {3}_ B
B =8zr~-1, and 5 =23;

f’_'liflzz.
=
Thus {7+ 3) =224 +280% + 9722 + 18224 131.

The exlenlation may, however, be effected more gystematically by Horner’s
process, a8 explained in the next article.
549, Let f(x)=pa*+pa ' +px "+ . +p,_w+p;
pub =y + A, and suppose that / (x) then becomes
WY+ 9y TGy T T+,
Now y =2 —h; hence we have the identity

g

P +pE T Hp T L p, P,
=gu(m_k}n+91 (m_k)uhl +.- +‘I.—1(x _;") +q.;

therefore ¢, is the remainder found by dividing F(x) by 2—&;
also the quotient arising from the division iz

qo(x"_k)“-l +q1(z_ﬁ‘)lus+ Sl

Similarly ¢,_, is the remainder found by dividing the last
expression by = — A, and the quotient arising from the division is
P Y o R ) e SO S

and so on. Thus g, ¢,_,, g, _,,... may be found by the rule ex-
plained in Art. 515, The last quotient is'¢,, and is obviously

equal to p,.
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Erample. Find the result of changing ¢ inte £+ 3 in the expression
Dpd S 2 B 1,

Here we divide successively by &~ 3.

2 -1 -2 5 -1 Or more briefly thus:
6 15 39 132 3 -1 -9 5 -1
5 13 ddfial=
¢ 33 138; 4 2 5 13 441131
1(15 46 [182=¢, 2 11 45| 182
51
T 9Tmq, 2 17|97
6 212
23 = T 2

Hence tha requli is 22+ 2328 + 9742 + 1822+ 181, Compare Art. 548,

It may bo remarked that Horner's pracess is chiefly useful in numerical
work,

530. If the variable x changes continuously from a to b the
Junetion £ (x) will change continuously from f(a) fo £ (b).

Let ¢ and ¢ + & be any two values of » lying between o and b.
We have

. Ko L
f(c+k}—f(c)=hf{c)+§f (@“'-u"'@f {e);

and by taking % small enough the difference between /(¢ +4) and
F(¢c) can be made as small as we please; hence to a small change
in the variable x there corresponds a small change in the function
J(x), and therefore as x changes gradually from a to 5, the func-
tion f(x) changes gradually from £ (a) to F(&).

551. Tt is important to notice that we have not proved that
S (&) always increases from f(z) to f(b), or decreases from f{a)
to £(b}), but that it passes from one value to the other without
any sudden change; sometimes it may he increasing and at other
times it may be decreasing,

The student who has a knowledge of the elements of Curve-
tracing will in any particular example find it easy to follow the
gradual changes of value of /(x) by drawing the curve y =f{x).

552. If £(a) and £(b) are of conirary signs then one root of
the equation £ (x) = 0 must le between a and b,

As 2 changes gra:dua.lly from « to b, the function f(#) changes
gradually from f{a) to f{b), and therefore must pass through all
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intermediate values; but since f{a} and f(4) have contrary signs
the value zero must lie between them; that is, f{z)=0 for some
value of = between a and &.

It does not follow that f{x) =0 has only one root between o
and b; neither does it follow that if f{a) and f{b) have the same
sign f(z) =0 hag no root between a and b,

553. Every equation of an odd degree has at least one real
root whose sign ¢2 oppostte (o that of ils lost term.

In the function F{z) substitute for z the values + w0, 0, —c0
successively, then

Sro)=tn, [fOl=p, Jl-o)=-x.

If p_is positive, then f{x)=0 has a root lying between 0 and
~o0, and if p_is negative f{x) =0 has a root lying between O
and + oo,

554. Every equation which e of an even degree and has dis
lost term negative has at least two real Toots, one positive and one
negative.

For in this case
SHw)=+w, [f(0)=p,, [fl-o)=+wo;

but p ig negative; hence f{x)=0 has a root lying between 0
and + oo, and a root lying between (0 and —oo,

555, If the expresmions £(a) and f(b) heve contrary signs,
an odd number of roots of £(x)=0 will lie batween & and b; and
i £(a) and £(b) have the same stgn, either no root or an even numbsr
of rools will lie befween a and b.

Buppose that @ ig greater than b, and that o 8, y,...x
represent all the roots of f(x)=0 which lie between @z and 5.
Let ¢ (x) Lo the quotient when f(z) is divided by the produect

(z—a) (- B (x—7) ... (x—«); then
S@)=(@-e)(@-B)(z= 7). (r—x)$()

Bence  flo)={g—a){e—B}{a—7) ... (a— «)p(a}
SO =b~a) b-FE—y) ... 3-x)o(b).

Now ¢ (o) and ¢(b) must be of the same sign, for otherwise &
root of the equation ¢(x) =0, and therefore of f(z)=0, would
lie between @ and & [Art. 552), which is contrary to the hypo-

H, H. A, 30
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thesis. Hence if /() and F(b) have contrary signs, the ex-

pressions

(@—a)(a=B) {e=y) ... (@—x),

(b=a) (b= ) (b =) .. (6 =)
must have contrary signs. Also the factors in the first expression
are zll positive, and the factors in the second are all negative;

hence the number of factors must he odd, that is the number of
roots a, f3, v, ... x must be odd.

Similarly if f(a} and f(b) have the same sign the number of
factors must be even. In this case the given condition is satisfied
if a, B, y, ...« are all greater than a, or less than b; thus it does
not necessarily follow that #{x) = 0 has a root between @ and &

556. 1fa,B,¢,...k are the roots of the equation /() = 0, then

F@) =, ) (& =B (5=0) ... (5B
Here the quantities a, b, ¢, ... % are not necessarily unequal,
If » of them are equal to @, s to b, § 10 ¢, ..., then

S =p(o—a) (x-b) (m—c) ...
In this case it is convenient still to speak of the equation

Sz} =0 as having n roots, each of the equal roots being considered
a distinct root.

557, If the equation £(x) =0 has r roots equal to a, then the
equation £'{x) =0 will have r - | rools equal fo a,
Let ¢(x} be the quotient when f(w) is divided by (w--a);
then f{x) = (x — &) d{x).
Write = + 4 in the place of x; thus
Slo+hy=(2—u+ ) dlx+h);

f(x)+hf’(m)+§f”(w)+

= {(:cva)’+ r{e~a)"'h+ ...}{¢(x)+k¢'(x)+f£4>”(a:}+ } .

In this identity, by equating the coeflicients of %, we have
S} =r{c— o) (x) + (2 - a) ¢'(2).

Thus f7(x) contains the factor x— g repeated r—1 times; that
Is, the equation f'{x)=0 has » - 1 roots equal fo «.
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Similarly we may shew that if the equation Flxj=0 hag s
roots equal to &, the equation #"(x)==0 has s — 1 roots equal to &;
and so on.

558, From the foregoing proof we see that if fix) contains
a factor (x— a)’, then #"{x) contains a factor (x—a)™'; and thus
JS{z) and f'(a) have a common factor (w—a)™'. Therefore if
J(z) and f’(«) have no common factor, no factor in f(z) will be
repeated; hence the equation f{x}=0 has or has not equal roots,
according as £{x) and ' (x) have or have not o common factor
tnvolving x.

559. From the preceding article it follows that in order to
obtain the equal roots of the equation f(x) =0, we must first find
the highest common factor of f{sx) and f"(x).

Ezample 1. Solve the equation #1123+ 44x® — T8+ 48 =0, which has
equal roots.

Here Fx) =t - 1iaf 4 dde® — T + 48,
F'{x) =4 - B3B3 4 88x - Th;

and by the ordinary rule we find thaf the highest common factor of f{x) and
F(z)isx-2; hence (z—2)? is a factor of f{z}; and

Sz =(z -2 (&7 - T+ 12}
| = (5= 92 (0~3) (2 - 4);
thus the roots are 2, 2, 3, 4,

Egample 2. Find the condition that the equation a2+ 367+ 3cx+d=0
may have two roots equal.

In this case the equations f{x)=0, and " (£)=0, that Is
ar® 4+ 8bxi+ Sex+d=0 ... (1)

must have a common root, and the conditivn vequired will be obtained by
eliminating & betwesn these two equations.

By combining (1) and (2}, we have

Y2 B+ E=0 e e B
From (2) and (3), we obtain
x? _ _J: oy
Sbd-) be—ad 2(ae-bY’

thus tha required condition is
{be - adP =4 (uc - 1) (bd— &3
30—2
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560. We have seen that if the equation f{z) = 0 has » roots
equal to @, the equation J'(xz} =10 bas r -1 roots equal to 4. But
JS'{w) is the first derived function of /7 {z); hence the equation
- S (@) =0 must have r — 2 roots equal to a; similarly the equation

J7{x)=0 must have »—3 roots equal to ¢; and so on. ‘These
considerations will sometimes enable us to discover the equal
roots of f(z)=- 0 with less trouble than the method of Art, 559.

561. If a, b c,.. .k are the roots of the equation f(x}=0, to
prove that

PN LN C) f(xT__Gf_(_})E'

x—-a x-b
We have flz}=(x—a)(z-b){z—c)...(x—k};
writing @ + % in the place of x,

Slreb)y=(@-a+i)fe-b+h)z—c+h) .. (m-k+A) ... (1)
But f(x+)¢)=f(m)+kf(x)+§ @

hence f'(x) is equal to the coefficient of % in the righthand
member of {1); therefors, as in Art. 163,
SFla)=(a-b)x—-c) ... (&-k)+ (x—a)(x—c) ... (- k) +
. AR I I O B C R C)
t AT
hat is, JFimy= ST B

ma:cbxc

562. The result of the preceding articls enables us very easily
to find the sum of an assigned power of the roots of an equation.

Brample. 1f 8, denote the sum of the & powers of the roots of the

_ egquation B+ pzt g’ +1=0,
fird the value of S, S, and §_,.
Let F(#)=a®+pzt+ g+ t;
ther S z) =50+ dprd+ g,
f_(l

=otd{at+p) 2 £ {a® + ap) o + (@3 + a®p + g) w4 ab+ adp 4 ag;

and similar expressions hold for

@ @ e i@

z-b' z-¢’ z-4' z-¢'
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Hence by addition,
Boet 4 dpt 4 Qg =5t + (8 + 5p) B+ (§,+p8,) 2*
+ (S;+ St 5g) 2+ (8,4 pS; + 48,

By equating coefficients,

8, +5p=4p, whence 5;=-p;

Sa+pS;=0, whence S,=p*;
Sg+p3,+5g=2¢, whence Sy=-p*- 8¢;
S,+p8;+¢5,=0, whence 5,=p-+4pq.
To find the value of S, for other valnes of k, we proceed as follows.
Multiplying the given equation by #*-%,
2+ pxt T+ g2t it =0,

Substituting for = in succession the values g, b, ¢, d, ¢ and adding the

results, wa obiain Si+p81 1 ¢85 +18,4=0.
Put k=5; thns S;+p8,+¢8,+5t=0,
whencs Sy = —pb - 5p%q - &t.
Put k=8; thus Syt oS+ g8 +18, =0,
whenes Sg;=p%+6p*q + Bg>+ Gpt.

Te find § ,, put k=4, 3, 2, 1 in suceession ; then
8,+pSg+ g8, +1S_, =0, whence §_,=0;
84+ pS, +5g +15_,=0, whence S_,= _%.‘i;
S +p8, + ¢85 +t8_;=0, whenca §_;=0;

2
S, +5p+g8_g+t3_,=0, whanca S_4:2—§__— -4.?

563, When the coefficlents are numerical we may also pro-
ceed as in the following example.

FEzrample. Find the sum of the fourth powers of the rools of
. 8- 24 -1=0,
Heare j(x}]::&"-—w-}-x-—l,
@) =3t 4z +1.
a1 1 1
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henee &, is equal to the coefficient of 1; in the quetient of [ {z} by f{z),

which is very conveniently obtained by the methed of synthetie division as
follows:
1/ 3-4+1
b 6-3+3
-1 4-2+ 2
1 4- 242
i0-5+456

3+8+2+86+10+......

L, 3 2 2 3 10
Hencethequotlentzs5+$—2+x—_,+;d+§+ ...... H

thus 8,=10.

EXAMPLES. XXXV, e

If f(2)=2%+ 104°+39a%+ 762+ 65, find the value of f(z — 4).
If f(z)mat—~1243+172% - 92+ 7, find the value of f{x+3).

If flz}=22*-132% + 102 - 19, find the value of f(x+1).

If f(#)=2*+ 1629 + 722% 4 642 — 129, find the value of flz—4).
If f{x)=as®+bs®+cx+d, find the value of F(z+A)—F(2-2).

6. Shew that the equation 1047 — 17224+ 2+ 6=0 has a root
between 0 and 1.

7. Shew that the equation 2t— 5x3+4322+352—T0=0 has a root
between 2 and 3 and one between -2 and 3.

8. Shew that the equation 2*— 12x®+ 122~ 3 =0 has & rcot
between — 3 and —4 and another between 2 and 3,

9. BShew that 2%+ 52— 802? — 192 - 2=0 has a root hetween ¢ and
3, and a root between — 4 and —5,

L

A

Solve the following equations which have egual roots:

10, 29224 40412=0. 11, #-622+127 - 102+ 3=0.
12, %= 184446727 = 17122+ 2162 ~ 108=10),

13. 2 -ad+4a2—3v+2=0. 14, 8t + 42818224110 -2=0.
15, #3254 62" - 302 -Br+2=0.

16, +F—2% —4at + 12017 - 322 ~ 18p 4 18=0),

17, #—(a+h)r-ale-B)at+at{a+b)x - ab=0.
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Find the sclutions of the following equations whick have common
roots :

18, 2x' -2+ 22432 —6=0, 428~ 235+ 3z - 9=0.
19, 4at4122°— 22~ 152 =0, Bt + 1325 — 422 - 152=0.
20, Find the condition that o — p3®+7=0 may have equal roots,
21. Bhew that z*+7224+5=0 cannot have three equal roots.
22. TFind the ratio of b to & in order that the equations
ax®+br+a=0 and ¥ —2e?422x-1=0
may have (1) one, (2) two roots in common.
23, Shew that the equation
at et l4n{n- 1yan 24+ |2=0
cannot have equal roots.

24, If the eguation #° - 10e®22+ b+ =0 has three equal roots,
shew that abt—9ad+f=0.

25. If the equaetion 2*+az?+b2%+ exr+ d=0 has three equal roots,

. 6e—ab
shew that each of them iy equal to S8

26, If s54-g2%+722+:=0 has two egqual roots, prove that one of
them will be a root of the quadratic
15r2® — Bghue+25¢ — 4gr=0,
27. In the equation 2% —»—1=0, find the value of §,.

28, In the equation a*—¢3—7xf+2+6=0, ind the values of §,
and 3.

TRANSFORMATION OF EQUATIONS,

564. The discussion of an equation is sometimes simplified
by transforming it into another equation whose roots bear some
assigned relation to those of the one proposed. Such transforma-
tions are especially useful in the selution of cubic equations.

565, To transform an equation inic ancther whose rools are
those of the proposed equation with contrary signs.

Let 7 (x) =0 be the proposed equation.

Put —y for x; then the equation f(—y)=0 is satisfied by
every root of f(z}=0 with its sign changed ; thus the required
equation is f{—y) = 0.
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If the proposed equation is
PP Ep ™ +p,_x+p =0,
then it is evident that the required equation will be
2~y T APy T e 1T,y + (- 1), =0,
which is obtained from the original equation by changing the
sign of every alternate term beginning with the second.

566, To transform an equaiion inlo another whose roots are
equal to those of the proposed equation multiplied by a given
quantily.

Iet f{x) =0 be the proposed equation, and let ¢ denote the

given quantity. Put y=gw, so that x:g , then the reguired

equation is f(g) =0,

The chief use of this transformation is to elear an equation of
fractional coefficients.

Ezample. Bemove fractional coofficients from the equation
1

3 3
A .
218 5% 8z+16__0.

Put _n:=g and muitiply each term by ¢*; thus
3 1 3
3 _2 oyt 2 Ayt T
2y 5 9¥ 8ﬁ+164"0'

By putting g=4 all the tcrms become integral, auvd on dividing by 2,
- wa cbhialn

yo-By2 -y +6=0.

567. o transform an equation inte another whose roots are
the recigrocals of the roots of the proposed equation.

Let f{z)=0 be the proposed equation; put ==, so that

B

&= ;} ; then the required eyuation is f G) =0

One of the chief uses of this transformation is to obtain the
valnes of expressions which invelve symmetrical functions of
negative powers of the roots,
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Example 1, Ifa, b, ¢ are the roots of the equation

-prtigr—r=0,

1 11

find the value of EtEtE.

Write L for x, multiply by % and change all the eigns; then the re-

sulting equation -t +py—1=0,
1
has for its roots =, 1 . 1 ;
[ R
1
hence 2-=1, zlz-?i;
a T ab ¥

SME3
Ezample 2. If a, b, ¢ are the roots of
2427 - Jx-1=0,
find tha valne of a3 I8,

Writing } for #, the $ransformed eguation ix
Y ¥+ 3y -2y -1=0;
and the given expression is equsl to the valne of & in this egnation.
Here R=-3;
Sy=(~ 32 -2(~2)=18;
and S3+88,-28, -8=0;
wheneca we obtain Sy=—42.

568. If an eguation is unaltered by changing x into % , 16
is called a reciprocal equation.
If the given equation is

pa T Fp T +p,_ & Ep,_z+p =0

the equation obtained by writing ; for w, and clearing of fractions

iz
pa+p by @ 4pa+pe+ 1=0.
" If these two equations are the same, we must have
=Pumy Pog 2, =5 1

e =y e Py = Ty P T PuE
S 2, *op, 2. 2,
from the last result we have p =+ 1 and thus we have two

claszes of reciproeal equations,
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() If p_=1, then

Pi=Peyy Po=Pier Pa=Payron ;

that is, the coefficients of terms equidistant from the beginning
and end are equal.

(i) If p_=~1, then

Pim= Doyt Py=mPaegy Pa™ T Pucgs s

hence if the equation iz of 2m dimensions p =-p,, or p = 0.
In this case the coefficients of terms equidistant from the begin-
ning and end are equal in magnitude and opposite in sign, and
if the equation is of an even degree the middle term iz wanting,

569. Buppose that /' (x) = 0 is a reciprocal equation,

If f(x)=10 is of the first class and of an odd degree it has &
root ~1; so that f(x) ig divisible by 2+ 1. If ¢ (=) iz the
quotient, then ¢ (x) =0 iz a reciprocal equation of. the first class
and of an even degree.

If fiz)=0 is of the second class and of an odd degree, it
has a root +1; in this case f/(») iy divisible by =-1, eud as
before ¢ (z) = 0 is a reciprocal equation of the first class and of
an even degree.

If f{z)=0 is of the second class and of an even degree, it
has a root +1 and a root —1; in this case f(z) is divisible by
2’ —1, and as before ¢(2) =0 is a reciprocal equation of tha first
class and of an even degree.

Hence any reciprocal equation is of an éven degree with
its last tern positive, or can be reduced fo this form; which may
therefore be considered as the standard form of rectprocal
equations.

570. A reciprocal equation of the standard form can be re-
duced lo am equation of half ifs dimensions.

Let the equation be
axr™ + b o™ T ke e+ br =0,

dividing by " and rearranging the terms, we have

a(x"’+—1;,>+b<a;”‘"’+%, +c(:r"’"+ 3_;)-}-.“4—)&:0.
@ @ amr
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1 1 1 - 1

1
&

Now

hence writing z for x+ =, and giving to p in suecession the values
1, 2, 3,... we obtain

E)

1 .
:c'—i—;,:z‘—f%,

jr=

Bt = -2 —z=2"-3z;

3

1
m‘+é=z(z‘-—3z)—(z’— D=2 —427+9;

1. . . :
and so on; and generally "+ w18 of sn dimensions in 2 and

therefore the equation in # is of m dimensions,

571. Tofind the equation whose roots wre the squares of those
of o proposed eguation.

Let f(x) =0 be the given equation; putting y =% we have
= /y; hence the required equation is f'(./y) = 0.
Ezaemple. Find the eguation whose roots are the squares of those of the
equation @+ py2*+ P +py=0.
Puiting =-==,/y, snd traneposing, we have
redNy=—(Py+p);
whenea (v + 2P + 24 Yy =Py + 21 Pey + B
ox P+ 8ps- 2 + 0 - 2oy} y -7 =0
Compare the solution given in Ex. 2, Art. 530,

579, To transform an equation nlo another whose roots
exceed these of the proposed equalion by a given quaniity.

Let f(x) =0 be the proposed equation, and Jet % he the given
quantity; put y=ax+4, so that @=y-—4%; then the required
equation is f{y—A)=10.

Similarly f(y+4)=0 is an equation whose roots are less by
% than those of /(=) = 0.
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Ezample. Find the equation whose roots exceed by 2 the roots of thae
egquation b4 3027+ 832+ Tha 4 21=0.

The required equation will be obiained by substituting -2 for x in the
proposed equation ; henee in Horner's process we employ x4 2 as divisor,
and the calenlation iz performed as followsa:

4 32 83 70 21

& U 3 6 |9
i 18 3 |0

¢ 8 |-13

& o

4

Thus the tranaformed equation iy
44 -132*+9=0, or (42"~ 9) (22— 1)=0.

The roots of this equation are +; 3

3 g, +1, ~1; hence the roofz of

the proposed equation ars

573. The chief use of the substitution in the preceding
article is to remove some assigned term from an equation.

Let the given equation be
pEApE T p T L p =0
then if 3 == — &, we obtain the new equation
Py + A +p g+ W7 40, (y +A) T L+, =0,
which, when arranged in descending powers of g, becomes

oy"a—(np,h—l-j?;)f-' { (|2 1)390?& +{‘n—1)plf&+j)}f +...=0,

-5

If the term to be remcwed is the second, we put np b+ p, =0,
go that k=—-£;— ; if the term to be removed is the third we put

o

nfn-1) .
{ |—9——) R+ —-Vph+p, =0,

and so obiain a guadratic to find h and similarly we may remove

any other assigned term,
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Sometimes it will be more convenient to proceed as in the
following example.

Ezample. Remove the second ferm from the equation
P gl rxds=0.

Let a, 8, v be the roots, so that s +g+y= —%. Ther if we increase

each of the roots by %, in the transformed equation the sum of the roots

will be equal to “%“’"%; that is, the cocficient of the second term will
be zero.

Hence the required transformation will be effected by substifuting z— é—:;
for x in the given equation.

574. From the equation f(w)=0 we may form an equation
whose roots are connected with those of the given equation by
some assigned relation.

Let i be a root of the required equation and let ¢(x, v} =0
denote the assigned relation; then the transformed equation can
be obtained either by expressing « as a function of ¥ by means
of the equation ¢ {x, ¥} =0 and substituting this value of = in
J(z)=0; or by eliminating = between the equations f(z)=0

Ezample 1. If a, b, ¢ are the roots of the equation =8+ px2+gsir=0,
form the equation whose yoots ara
1 1 1

Q*E, b-c—d, C—E.

When £ =g in the given equation, y=a -~ L in the transformed equation;

be
1 3 a
but a—Eza-m_a-;-;,
and therefors the tranaformed equation will be obtained by the substituiion
y=o+Z, or =27 ;
y=ety T4’

thus the required equation ia
e pr (L4 +e 1+ + (1472 =0.
Ezzmple 2. Form the equation whose roots are the squsres of the
differenges of the rocts of the cubie -
Brgetr=0.
Let @, b, ¢ be the roots of the cubic; then the roois of the required
equation are b-% (e-a® {(a-5)>
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2abe

Now (B-eP=b*+c?— Lbe=u? 40+ ' - a* - —

={a+b+¢)? - 2 (be+catab) — as_?_?f

2r
B i
7 a+ﬁ’

also when z=c¢ in ths given equation, y=(b-¢}® ir the transformed
equation ;

2r
- = — _ g2 20
o oy=-2¢ L el

Thus we have to eliminabe x between the equations

B +gr+r=0,
and 234 (g +y)z - dr=0.
- 3.,-
By eubiraction {g+y)x=3r; or m—m .

Substituting and redueing, we obtain
3+ 6y + 9¢% + 21 + 4@ =0,

Cor, Ifa, b, are real, (b—2)% {c—a)?, {a—b)! are all positive ; therefore
271 4 4¢7 is negative.

Hencsa in order that the equation £+ qr-+r=0 may have all its roots

2 H

real 271+ 445 must be negative, that is (%) + (g) must be negative.

If 27r%+ 4¢%=0 the transformed equstion hss one root zero, therefore
the original equation has two equal roots,

If 27r2 4449 is positive, the transformed equation hss a negalive root
[Art. 553], therefore the original eguation must have two imaginary roots,
since it is only such & pair of roote which can prodnce a megative root in
the transformed equation.

EXAMPLES. XXXV. d.

1. Trausformo the equation 2% — 4224 %x— %=0 into another with
integral coefficients, and unity for tho coefficient of the first term.

2, Transform the equation 31— 54%42%-2-+1=0 into auother
the coefficient of whose fixst ferut is unity.

SBolve the equations:
3 2464 ai2=0.
4 21047+ 2627 ~ 102+ 1 =0.
5, ab-BaA4+ 923928+ B —1=0.
6, 48— 243+ 570 - TS BT - 24+ 1 =0
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7. Solve the equation 3a% - 2222 4-48x - 32 =0, the rovts of which
are in harmonical progression.

8. The roots of 2®—11.424-362—-36=0 are in harmonical pro-
gression; find them.

9, ‘If the roots of the equation 23 - @4 + .4 — b =0 are in harmonical
progression, shew that the mean root is 3.

10, Selve the equation 404* - 222~ 21a% + 2.0+ 1=0, the rovts of
which are in harmonical progression.

Remove the second term from the equations:
11. 28— 624102 —3=0

12, 2% +4a%+ 228 - 47— 2=0.

13, #4524 432842t +x-1=0,

14, 2%-19454+ 32— 172+ 300=0.

15. Transform the equation xs-'g-g=0 into one whose roots

exceed by g the corresponding roots of the given equation,

18. Diminish by 3 the roots of the equation
7 —dat 4+ 32% - 42+ 6=0.

17, Find the equation each of whose roots is greater by unity
than a root of the equation 2% - 5%+ 6z —3=0.

18. Find the equation whose roots ara the squares of the roots of
Aty B+t 1=0,
19. Form the equation whose roots are the cubes of the roots of
A3t 2=0.

If «, b, ¢ are the roots of a°+¢e+r=0, form the equation whose
roots are

0. ka~l kb-Y ke-l 21, bR, ot a?lh

b+e ¢ta a+td a1 . 1 1
a9 T g - 23. bH'a,’ gy ab+c.
24 a(btc), Dieda) cl{e+b) 25, o, B3, &

b e ¢ a a b
26. "_4‘5, —+E’ —b+‘-
27. Bhow that the cubes of the roots of w+awt+le+ub=0 are
given by the equation 2% +a%" + b + b=,

28. Bolve the oquation 25— 5ri- 52342522+ 4w — 20 =0, whose

roots are of the form a, —a, b, 1, ¢

29. If the roots of 27+3pa®+3ge+r=0 are in harmonical pro-
gresuion, shew that Z¢d=» (3py —#).
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Cusic EquaTions.

575. The general type of a cubic equation is
a'+ P+ Qo+ B=0,

but as explained in Art. 573 this equation can be reduced to the
simppler form L +ge+r=0,
which we shall take as the standard form of a cubic equation.

576, To solve the equation 2*+gx +r =40,
Let & =¢+ z; then
o =3+ 2+ By (y ) =y + 24 By,
and the given equation becomes
Y+ + Byt uet+r=20

At present y, » are any two gquantities subject to the con-
dition that their sum is equal to one of the roots of the given
equation ; if we further suppose that they satisfy the equation
3yz+ g =0, they are completely determinate. We thus obtain

93
¥ et —r, Pl=- 355
hence 3, 2* are the roots of the quadratic
qs
&t — ﬁ =0,

Solving this equation, and putting

7 P qa
ARy £ SO ),
. pe = qx
4 :—-3-- 4+§.’? ....................... (2),

we obtain the value of 2 from the relation =%+ 2; thus
1

i L
r = 9| 7 ~  ¢1°
‘”“{‘?’*"/Z"ﬁ} *{'2“ \/I+'2'f '
The above solution is generally known as Cardan’s Solution,
as i was first published by him in the drs Magna, in 1548, Cardan

obtained the solution from Tartaglia; but the solution of the
cubic seems to have been due originally to Scipio Ferreo, about
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1505. An interesting historical note on this sulject will be
found at the end of Burnside and Panton’s Theory of Equations,

577, By Art. 110, each of the quantities on the right-hand
side of equations (1) and (2) of the preceding article has three
eube roots, hence it would appear that x has nine values; this,

however, is not the case, For since 3= the cube roots are

-z

3}
to be taken in pairs so that the produet of each pair is rational.
Hence if ¥, » denote the values of any pair of cube roots which
fulfil this condition, the only other admissible pairs will be
wy, 'z and o'y, wz, where w, « are the imaginary cube roots of
unity. Hence the roots of the equation are

y+z owyt+ol oY+ oez

Ezxamnple. Bolve the equation #* - 15z =126,
Put y + 2 for z, then
¥ 2 (By2 - 15) £ =126

put Syz-15=0,
then =126 ;
also ¥ =135

hence 3%, #* are the roots of the equation
12— 126c+125=0;
ys = 125, 33= 1 H

y=05, z=1
Thus y+i=5+1=0;
wy+w”z=_1+"/_s.5+-_l_‘ =2
2 2
=342 .5

whi b wz=—8-2,/T"3;
and the roots are 8, -3+2.)/-8, -3-2,/73
578. To explain the reason why we apparently obtain nine
values for & in Art. 570, we observe that ¥ and z are to be found

from the equations 3* +2"++=0, yz= v—%; but in the process of

3
. . g .
solution the second of these was changed into %" =— ‘{7 , which

H.H, A. 31
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=
would also hold if -——-—(-?, or yz:—w_—;; henee the other six
values of = ave solutions of the culicg

Pregr+r=0, 2*+oigr+r=0

579. We proceed to consider more fully the roots of the
equation & +qx+r=0.

a
(i) If % + L is positive, then »* and 2° are hoth real; let

27
y' and = represent their arithmetical cube roots, then the roots
are Yz, oy+wr oY+ e
The first of these is real, and by substituting for « and w' the
other two become

. y+z+y-zJ_—3, Y+ & y;z‘\/jg.

2 2 2

(iiy If 14- +% is zero, then y?=2*; in this case y=z, and

the roots become 27, y{w+ «®), y(w + %), or 2y, ~y, —¥.
i}

(i) If %’1‘- ‘% is megative, then 3* and 2° are imaginary ex-

pressions of the form « +1b and @ —ib. Suppose that the cube
roots of these quantities are m + in and m —in; then the roots of
the cubic beconie

M+ Tn + 9 — i, or 2m;

(m+in)o+ (m—in)e’, or —m—n,/3;

(m+in)w’+ (m—inju, or —m+n J3;
which are all real quantities. As however thers is no general
arithmetical or algebraical method of finding the exact value of
the cube root of imaginary quantities [Compare Art. 89), the

solution obtained in Art. 576 is of little practical use when the
roots of the cubic are all real and unequal.

This case is sometimes called the Jrreducible Case of Cardan’s
solution.

580. In the drreducible case just mentioned the solution may
be completed by Trigonometry as follows. Let the solution be

1 1
z=(a+ b)Y+ (a— by
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put  a=rcosf, b=rsinf so that «* =o'+, ta.nﬂ.—_i%;

e

then {e+ éb)" {7 (cos & + i sind)}

Now by De Moivre's theorem the three values of this ex-
pression are

gli csa-!_’ . @ 93-; 9+21‘r+. 0 #+ 27
(0 g.zsmg), cos — isin - — ),

1( G+dmr . . O+4r
and ri{ cos + ¢sin -),

3 3

1
where »° denotes the arithmetical cube root of », and 6 the

smaltest angle found from the squation tan 6= 2.

1
The three values of (z ~b)® are obtained by changing the sign
of ¢ in the above results; hence the roots are

&+ 2 H B+ 4o
e 2r3¢cos .

1
Qqﬁcosg, 29 cos 5>

‘Bigrapraric EQuaTioss,

581. We shall now give a brief discussion of sowne of the
methods which are employed to obfain the general solution of a
biquadratic equation. It will be found that in each of the
methods we have first to solve an auxiliary cubie equation ; and
thus it will be seen that as in the case of the cubie, the general
solution iz not adapted for writing down the solutmn of z
given numerical equation.

582, 'The solution of a bigquadratic equation was first ob-
tained by Ferrari, 2 pupil of Cardan, as follows.
Denote the equation by
2+ pa’ +ga® + Brw 8= 0

add to each side (ax + §)°, the quantities @ and b being determined
s0 as to make the left side a perfect square; then

'+ 2pa® + (g + o) + 2{r + ab)2 + 8+ b= {axc + D",

Suppose that the left side of the equation is equal to (x*+-pe+ k)
then by comparing the coefficients, we have
PF+lhogra’, ph=r+ab, F=s+d’;
31—2
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by eliminating ¢ and & from these equations, we obtain
(ph—2) =3k +p* ~g) (B ),
or W~ gkt 2(pr—8) e+ pPe—gs— " =0,
From this cubic equation one real value of k can always he

found [Art. 553]; thus & and b are known. Also

(& + pu + &)° = (@ + b)*;

. 2+ pe 4 k= (ax + b);
and the values of » are to he obtained from the two quadratics

Z+({p—a)m+(k-5b)=0,

and Fr(praje+ kel)=0

Ezample. Solve the equation
ate 2r3 = 5z 102 -3=0,

Add a%®+ 2abz + D to each side of the equaiion, and assume

24— 2234 (a7 - 5) 2242 (@b +5) 2+ 5V - B= (22 — 3+ K)2;

then by equating coefficients, we have
@2=2k+6, ab=- k-5, bB=k+3;
(2+6) (K2+8)= (k + 5)2;
k34 5P — 4k -T=0.

By trial, we find that &= - 1; hencs o¢®=4, ¥ =4, ab= 4

But from the assumption, it follows that
(@ -z +k)={ac+3)2

Substituting the values of %, @ and b, we have the two equations
Pex-1=&(2-2);
that is, 2 =-Bx+1=0, and 2342-3=0;
Bay6 ~1i,/18

whence the roots are 7 5

083. The following solution was given by Descartes in 1637.
Suppose that the biquadratic equation is reduced to the form
gt g’ w450,

assume &'+ g’ orxas= (@ + ke +l) (2 - ke +om);
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then by equating coefficients, we have
lrm-F=q, kim-0=», bn-.

From the first two of these equatious, we obtain
2?}&=k2+f_(+£, 2!:k’+q-—-£;

hence substituting in the third equation,
(¥ +gh+n) (B +gh—7) = ¥,
or . B+ 20k + (¢ —4e)}* - #* = 0.
This is a cubic in £ which always has one real positive solu-
tion [Avrt. 553]; thus when A* is known the values of 7 and e

are determined, and the solution of the biquadratic is obtained
by solving the two quadratics

e +he+i=0, and 2’ —ka+m=0.

Example. Solve the equation
) -2z 8r - 3=0.
_ Assume :r‘w2x’+8x—3=(rﬂ+k:c+1)(i3—kx+m};
then by equating coefficients, we have
I+m—-=-2 k(n-0=8, m=-3;
whence we obtain (k- 2K+ 8) (A7 =2k - B)= ~ 1215,
or M4+ 165264 =0,

This equation is clearly satisfied when kT-4=0, or k:==2. It willbe
sufficient to consider one of the values of & ; putting k=2, we have

m+l=2 m-I=4; fthat is, I=-1, m=3.

Thus -2 4+ 82 - B (22422 - 1){a% - 224 8);
hence 23425 -1=0, and 2*-2ux+8=0;:

and therefore the roots are -~ 1&,/2, 1+ ,/-2.

584. The general algebraical solution of equations of a
degree higher than the fourth has not been obtained, 2nd Abel’s
demonstration of the impossibility of such a solution is generally
accepted hy Mathematicians. If, however, the coefficients of an
equation are numerical, the value of any real root may be found
to any required degree of accuracy by Horner's Method of ap-
proximation, a full account of which will be found in treatises on
the Theory of Egquations.
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B85,  "We shall conclude with the discussion of scme miscella-
necus equations.

Example 1. Solve the equations:
Z+y+itu=0,
az + by +cz+du=0,
alz+ By + ot +dPu=0,
afe+ Dy + 24 Pu=k.
Multiply these equations, beginning from the lowest, by 1, p, g, 7 re-

gpectively ; p, ¢, r being quantities which are at present wndetermined.
Assume that they are such that the coefficients of y, z, u vanish ; then

s +paisgasr) =k,
whilst 3, ¢, 4 axe the roots of the equation
Pipt? et +r=0.
Eenes a*+pat+gat+r={a-b{a—cila-d);
and therefore {a-d){a-e){e-djz=k.
Thus the value x i found, and the values of y, #, ¥ can be written down
hy symmetry. ’
Cor.  If the eqnations are
s+y+zru=l,
az+ by +ez+du=rk,
a'r+ Pyt + d2u=12,
a’z + By + % + ddu=73,
by proceeding as before, we have
' wla +pad+ga+r) =k +pki+gk+r;
{a-blla—clo~djz=(k-B){k-c}(k-d).
Thue the velve of = is found, and the values of y, z, u can be written
down by symmetry.
The solution of the above equations hes heen facilitated by the use of
Undetermined Multipliers.
Egample 2. Shew that the roots of the equation
fr—a) (-0 (z—c} - {e—a)~g*(z—-¥) ~ Az - ¢) + Yph=0
are all real.
From the given equation, ws have
{z—a)iiz-b) (x-c)- £} - {g®(x~ ) + R {z — &) - fgh) =0.
Let p, g be the roote of the quadratie .
-8} {x—ey~f2=0,
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and suppose p fo be not less than ¢. By solving the quadratic, we have
fr=bted BT eEE AR (1)

now the value of the surd is greater than b ~ ¢, so that p is greater than
or ¢, and g is less then 3 or ¢.

Tn the given equation substitute for = successively the values
tw, B q. -
the results are respectively

+o, -(Np-b-hp-0? +labog-hJe—gh, -,

since {(p-B{p-=r*=T-4) {c-4q).

Thus the given equation has three real roots, one greater than p, one
between p and g, and one less than ¢.

If p=g, then from (1) we have (5 —¢)? + 4/*=0 and therefore b=¢, f=0.
In this case the given equation becomes

(=) (e - &) {z = ) -~ g* = ¥} =0;

thusg the roots are all real. ’

If p is & root of the given equation, the sbove investigation fails ; for it
only shews that there ia one root between g and +w, namely p. Butas
before, thers is a second realrootless than ¢; hence the third root must alse

be real. Similarly if ¢ is a root of the given equation we can shew that all
the roots are renl.

The aguation here discussed is of considerable imporiance; it occurs
frequently in 3clid Geometry, and is there known as the Diseriminating
Cubic.

586. The following system of equations oceurs in many
branches of Applied Mathemutics.

Ezample. BSolve tha equations:
ath bR eth

k- o z

Sty =1
a-l—,u+ b+g+c+;, '
x ¥ z
— =1
f.'.+v+b-5-u +c+v
Consider §he following equation in §,
P P SRR Chg L Al DR ek
o I iy S iy R A RN

z, i, z being for the present regarded as knewn auantities.
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This equation when cleared of fractions is of the second degree in &, and
is satisfied by the three values f=3%, =y, f=», in virtue of the given
equations ; hence it must be an identity. [Ari. 310.]

To find the value of z, moltiply up by a+#, and then put a+86=0;

_ {ra-N{-a-p(-a—¥)

thus == -0 -0 :
. _la+)) {a+pg) (a+s)
that is, = __-—_(a Y P

DBy symmetry, we have
_QaN b )
RO

z_{c+?\) {e+p) e+
T {e—a)le-b)

EXAMPLES. XXXV. e

Salve the following equations:

1, 22-18x=34 2. 234722 -1720=0.

3. B+63-316=0. 4, 2+21x4342=0.

5. 92827 —9a2+1=20. 8. 2%—15af - 332 +847=0.
7. 224300 +3r+1=0.

8. Prove that the real rcot of the eguation 29+12x-12=0
is 2 ¥2 - ¥4,
Solve the following equations:
9. zt-32?—432-40=0. 10, #4—-102%-202-16=0.
11, a%+B23402%— 8¢ - 10=0.
12, 244228 - Y- Br+12=0
13, 2*-322-6xr-2=0. 14, 24 —20°— 12224100+ 3=0.
15, 4a*— 202743342~ 200+ 4=0,
16, af—Bat-172%4 1727+ 62~ 1=0,
17, #4005 18 - 80 — 1920, which hay equal roots,

18. Tind the relation between ¢ and » in arder that the equation
2% gr+r=01may Le put into the form xt=(24ar+ 532
Hence solve the squation
84— 360+ 27=0.
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19, If B+ 3px? 4 Bge+r and 2%+ 2pr + g
have a common factor, shew that
(P -¢) (¢~ pr) - (pg-rP=0.
If they have two common factors, shew that
P-g=0, ¢'-pr=0.

20. If the equation aa? 43822+ 3er+d=0 has two equal roots,
- . e — ad .
shew that each of them is equal to S a— 5

21. Shew that the equation a4 225 + ga? 472 +2=0 may be solved
ag a quadratic if #2==p’%,
22, Solve the equation
2% - 1828+ 16234 2847 — 3224 8 =0,
one of whose roots is /6 2.

23. Ifaq 8, y, 8 are the roots of the equation
gzt ra+s=0,
find the equation whose roots are 8 + v+ &4 (8y5)"1, &c

24 In the equatbion &% — ps3+g22 — ro-+ =0, prove that if the sum
of two of the roots is equal t0 the sum of the other two p? — dpg+Br=0;
and that if the product of two of the roots is equal to the product of
the other two ri=p?s.

25, The equation 2* - 2092 +56 =0 has two roots whose product is
unity: determine them.

26. Find the two roots of ¥ ~409x 4 285=0 whose sum is 5.

27. Ifa, b, g,k are the roots of
il St el S + Pp-pit + P =1,
shew that
(1+a®) (L+8%)... (1 + B =(1 = pytpg~ o (0 — Pyt g - o

28. The sum of two roots of the equation
at—Bat4 21a% — 80x+5=0
is 4 ; explain why on attempting o solve the equation from the kuow-
ledge of this fact the method fails,
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1 35, 3; are the sums of 7, 2n, 3n terms respectively of an
mthmetxc&}[ progression, shew that s,=3 (s2 -3)

2. Find two nurnbers such that their difference, sum and product,
are t0 one anotheras 1, 7, 24.

3. In what scale of notation is 25 doubled by reversing the digits?
4. Bolve the equations :
(1) (2+2) (x+8) (x—4) (- 5)=44.
2) 2(y+2)+2=0, y(z-2)+21=0, z(2x-y)=5.
8 In an A P, of which o is the first term, if the sum of the
firat p terms =0, shew that the sum of the next ¢ terms
a(p+g)g
r-=1

[R. M. A, Woorwick.]
6. Solve the equations:
(1) (a+ b) (czx+ by la—-bz)= (a’x - Bt (a+ba).

(2) x3+(2x 33—{12 {x- 1)} [Ixpra Crvin SErvien.]

7. Find ae arithmetical progression whose first term is unity
such that the second, tenth anE thirty-fourth terms form a geometric
series,

8. Ifa, 8 are the roots of 22+ p2+¢=0, find the values of

a*+af+8% o+ 8% of +a280 84
9. If2z=u+o?and 2y=5+01, find the value of
Y+ (@@ -1) (g%~ 1)
10. Find the value of

3

(4+«/15) +{4- 4/1*';) s
’6+«/3a)"~(6 «/3.—;;

[R. M. A, WooLwics.]

1i. Ifaand g are the imaginary cube roots of unity, shew that
atfSt4a1g-1=0.
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12. Shew that in any scale, whose radix is greater than 4, the
number 12432 is divisible by 111 and also by 112.

13. 4 and B run a mile race. In the first heat 4 gives B a start
of 11 yards and beats him by 57 seconds ; in the second heat 4 gives
B a start of 8] seconds and 13 beaten by 88 yards: in what time could
each run a mile?

14. Eliminate z, y, = between the equatjons:
Peyr=al, g esw=b% 2-gy=c r+y+z=0.
[R. M. A Woorwwor.]
15. Solve the eguations:
ar? + by + eyt =brd+ cay +ayt=d.
[MarE. TrRIPOS]

16. A watermnan rows to a place 48 miles distant and back in
14 hours: he finds that he can row 4 miles with the stream in the -
same time as 3 miles against the stream: find the rate of the stream.

17, Extract the square root of
(1) {(af+ab+be+ca)lbetea+ab+8% (et cutab+cl).
(%) 1—244/232 15— 822

b
18. Find the coefficient of 2% in the expansion of {1 —32)3, and the
b
term independent of z in (%.r’— ?%:

19. Solve the equations:
(1) 2r-3 32-8 243
-1 z-2 "r-3
(@) 2*~gP=zy—ab, (2+y)(ez+by)=2ab(a+d)
[Trixn. CorLn. Caus.]
20. Shew that if a(b—c)2¥+b{c~)zy+c(a—-b)y? is & perfect
square, the quantities a, b, ¢ are in harmonical progression,
[Br Cara. Coms. Cawms.]

0.

21. If
(g~ 2P+ (o2 + (@ —y)P=(y+2 - 2P+ (z+ 2 - P+ (2Hy — 2,
and @, y, 2 are resl, shew that r=y=s" 8t Carn. Conrn Caun]

22. Extract the square root of 3¢58261 in the scale of twelve, and
find in what acale the fracticn é would be represented by -i7.
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93. Find the sum of the products of the integers 1, 2, 3,. .z taken
two at a time, and shew that it is equal to half the excess of the sum of
the cubes of the given integers over the sum of their squares.

94, A man and his family consume 20 loaves of bread in a week,
If his wages were raised 5 per cent., and the price of bread were raised
2% per cent., he would gain 6d. 2 week. But if his wages were lowered
7% per cent., and bread fell 10 per cent, then he would lose 13d,
a week: find his weekly wages and the price of a loaf.

95. The sum of four numbers in arithmetical progression is 48 and
the product of the extremes is to the product of the means as 27 t0 35:
find the numbers.

26. Solve the equations:

(1) a{b-c)2?+bie—atr+cla—b)=0
(e-a)z-b) _@-o@-d)

) & -a—b r—¢—d

[Mara. TRIrOS.]

97, If /& —x+Nb—z+4++c—2=0, shew that
{a+b+o+32)(at+bte—ax)=4(bctea+ad);
snd if Fa+ b+ Ye=0, shew that {z+5 + ¢)¥=27abe.

98, A train, sn hour after starting, meets with an accident which
detaing it an hour, after which it proceeds at three-fifths of its former
rate and arrives 3 hours after time: but had the accident happened 50
miles farther on the line, it would have arrived 13 hrs. sooner: find the
length of the journey.

29. Solve the equations:
ety =2z 92- Te=6y, 2*+33+F=216.
[R. M. A. Woorwics.]

30, Six pepers are set in examination, two of them in mathematics:
in how many different orders can the papers be given, provided only that
the two mathematical papers are not succesaive {

31, In how many ways can £5. 42 2d. be prid in exactly 60 coins,
consisting of helf-erowns, shillings and fourpenny-pieces?

32, Find o and b so that 23+ aa?+11l2e+6 and 2%+ ba?+ 140+ 8
may have a common factor of the form 2%+ pr+q.

[Loxpon UNIVERSITY,]

33, In what time would 4, B, ' together do r work if A alone could
do it in six hours more, B alone in one hour more, and € alone in twice
the time?
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M I the eguatlons az+ 63!__ 1, ex®+ dy* =1 have only one solution
prove that = + 7=b and r_; Y= [MazH. Trires.]

35. Find Ly the Fmomial Theorem the first five ferms in the expan-
sion of (1 — 22+ 227 %.
36. If one of the roots of #2-+pr+g=0 is the square of the other,

shew that p— g (3p - 1)4¢%=0.
[Peme, Corn. (AmMB.]

37. Solve the equation

2= Dt Gr —H=0.
[Qeeens Corr. Ox.]
38. Find the valus of ¢ for which the fraction
Bl + 18y~ —4
F—(a4+1) 2 4+23r—a -7
admits of reduction. Reduce it to its lowest terros.  [Mara. Tripos.]

39, Ifea,d,c x, ¥ zare real quantities, and
(a+b+cf=3{bctcat+ab~- 22—y —2¥),
zhew that a=>b=¢, and =0, y=0, 7=0.
[Curisr’s CoLr. Caup]

40, What is the greatest term in the expansion of (1 - ?33:) 2when
the value of & is g? [Emm. CoLrn. CamB.]

41, TFind two numbers such that their sum multq{lied by the sum

of their aguares is 5500, and their difference multlphed OF the difference

of their squares is 352, [Cerisr's CorL. Caus.]
%

42. I r=rz, y=Q-1)b z=(A-3)e, A= %' express

2% 424 2% in its simplest form in terms of e, b, ¢,
[SprEY ConL. Cang)

43, Bolve the equations:
(1) 2%4-3x2=16x+60.
(2) P+ —r=2+ 2t y=2t+yt—2=1.
[Corrus Corn. 0x]
44, If z, y, 2 are in harmonical progression, shew that
log(x+2)+og (w — 2y+2)=21og (w -2\
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45, Shew that
14..!"3 1 EN
3" 2'731(4) ’

3r+3y  3y+2z_ 3e+2r

Sa—2b 3—-2c 3e-2a’

then will 5{zw+y+2)(be+4b—3a)=(% + By + 13z) {a+ b +¢).
[Carigr’s CoLn, Caup.]

L3.8
4.6

1 AL 4
'52-:'— (-) + o =§(2—\J’3)~f3.

[Eun, ConL, Caxm]

46, 1f

47. With 17 consonants and 5 vowels, how many words of four
letters can be formed having 2 different vowels in the middle and 1
consonant (repeated or different) at each end?

.

48, A question wasg lost on which 600 persons had voted ; the same
persons having voted again on the same question, it was carried by twice
as many as it was before lost by, and the new majority was to the former
a4 8 to 7: how many changed their minds? [Br Jorw’s Corr. Cams.]

49, Shew that

1-x
A+5)¥ _ 82 925 1347
g ™ ——gm=etg a3t gyt

)T
(1-2) {Crersr's Corl. CaxB.]

B0. A body of men wers formed into a hollow square, three deep,
when it was observed, that with the eddition of 25 to their number a
sclid square might be formed, of which the number of men in each side
would be greater by 22 than the square root of the number of men in
each side of the hollow square: required the number of men.

51. SHolve the equations:

(1) ¥iatzr+2vla—ap=3 a2

@ @- -t -zt r-—di=(a-F -}k

52. Prove that
2 2.5 2.5.8
L - - i —_—
J4-.1+6+ 6.12+G.12.18 +

[Bmney Corr. Caug)

53, Solve J65z+6)— Y5 6w —11)=1.
[Queens’ CoLL, CamB.]
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B4, A veseel contains g gallons of wine, and another vessel con-
tains & gallons of water: ¢ gallons are taken out of each vessel and
transferred to the other; this operation is repeated any number of
times : shew that if ¢ {a+8)=ab, the quantity of wine in each vessel
will always remain the same after the first operation.

65. The arithmetic mean between m and n and the geometric

mat ’df : ind m and n in terms
mn

mean between @ and b are each equal to

of & and &.

56, If =, y, # are such that their sum is constant, and if
{e+x -2y} {w+y —22)

varies as yz prove that 2 (y+2) — varies as ya
[Enm. Corn. Camsl]

57. Prove that, if # is grester than 3,
1.270,-2.32C,,4+3.4.7Cym . H{= 1) (r+ 1) (r+ 2= 2.773C,.
[Cxrists Corn. Cams.]
58. Solve the equations:

(1) ¥8z—1+4/32- 2=+ 45— 3+4/57 -4
{(2) 4{{x3—16)i+8}=a:2+16{x3—16);

[87 Jorn's Conr. Caus.]

59. Prove that two of the quantities @, ¥, z must be equsal to one
¥-2 2= r—¥ _

L+ R TI +xy—o’

60, In s certain community consisting of p persons, ¢ per cent can
read and write; of the males alone  per cent.; and of the females alone
¢ per cent. can read and write: find the number of males and feraales in
the community.

[y @b ‘ s . -
6l If == (g)ﬂ, shew that --——-—(9:"+:c") = (E)“*‘”_

another, if

aﬁ+b2
[Emm, Cori. Caue.]
62. Shew that the coefficient of 2% in the expansion of
(1—a-+ 28— 2%~ is unity.
63. Solve the equation

- [Loxpon UNIVERSITY.]

64, Find (1) the arithmstical series, (2) the harmenical series of
n terms of which o and b are the first and last terms; and shew that
the product of the #* term of the first series and the (- r+1)* term of
the sscond series is ab,
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85. If the reots of the equation

(1 —g+3;-’).v‘2+p (1+g)a+gq iy 1)+% w0
are equal, shew that p?=4q. {R. M. A. Woorwicn.]
66, If«l+52="Tab, shew that

log {:—13 (a+ b)} = :ql (log e +log b).
[Querx’s Corr, Ox.]
67. If nis o root of the equation
2 {l—ae)—x{a®+c) - {1+ ac=0,
and if » harmonic means are inserted between ¢ and e, shew that the

difference between the first and last mean is equal to ae{z ).
[Wapgam CoLr. Ox.]

68, If »+iC, ;%P =57 : 16, find n.

69. A person invests a certain sum in 2 64 per cent. Government
loan : if the price had been £3 less he would have received % per cent.
more interest on his money; at what price was the loan issued?

70. Solve the equation:
{Z+e+1PF~(#*+ 1P - 2% (22— 2+ 18~ (2 + 13+ 2%
=3 {2422+ 1P — (2t 1P~ 20,
[Merror Cort. Ox.]
T1. If by eliminating = betwesn the equations
At+ar+d=0 and zy+i(z+y)+m=0,
a quadratic in y is formed whose roots are the mame as thoss of the

original quadratic in #, then either @=2I, and b=m, or b+m=al.
[R. M. A. WooLwicn,]

72, Given log 2==-30103, and log 3="47712, solve the equations:
(L) 6==1—39-6‘*. () Jam«/é‘-’u% .

73. Find two numbers such that their sum iz 9, and the sum of
their fourth powers 2417. [Lowpon UxiversiTy,]

T4 A set out to walk at the rate of 4 miles an hour; after he had
been walling 27 hours, B set out to overtake him and went 43 miles
the first hour, 4¢ miles the second, 5 the third, and ro gaining & quarter
of a mile every hour. 1n how many hours would he overtake 41

75. DProve that the integer next above (,/34-1)2" contains 2%+1 ag
a factor.
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76. The series of natural numbers is divided inte groups 1 2, 3,4;
5, 6 7, 8 9; and so on: prove that the sum of the numbers in the
A% group 18 (v — 174 nd

T7. Shew that the sum of n terms of the series

1 1 /1% 137108 1.3.5 /1N
el ) )

1.3.5. 5.2 -1)
g;l_:n '

[B. M. A. Woorwrem.]

is equal to 1—

78. BShew that the coefficient of a™ in the expansion of e in

" 51 a3
('—1}3! 3('—1)31 2(_:”31
according as # is of the form Im, 8m+1, 3m 49,

79. Solve the equations:

¥ ¥y oz vy
1 — = = - o=t
n a b ¢ zty+z
¥ ¥ & ¥y = ¥
2 - - - - - =
()y+z+x x+y+3 ¥+y+z=3.

[Uxrv, Corr. Ox.]

_80. The value of ayzis 74 or 3% according as the series @, 2, ¥, 2,
& is arithmetic or harmonic: find the values of « and # assuming them
to be positive integers. (Merrow Corpn. Ox]

8L If ay—br=ca/lz a4 (i — b, shew that no real values of =
and y will satisfy the equation unless ¢* < «®+ 5%

82, If {(z+1)® is greater than 5& - 1 and less than 7o -3, find the
integral value of x.

83. I P is the number of integers whove logarithms have the
characteristic p, and @ the number of integers the logarithms of whose
reciprocals have the characteristic ~ g, shew that

logy I’ —logy, @=p—g+1.

84. In how many ways may 20 ahillinﬁ;s be given to b persons so
that no person may receive less than 3 shillings 7

B5. A man wisling his two daughters to receive equal portions
when they came of age bequeathed to 5’18 elder the accumulated interest
of a certain sum of money invested at the time of his death in £ per
cent. stock at 88; and to the younger he bequeathed the accumulated
interest of a suni less than the former by £3500 invested at the same
fime In the 3 per cents. at 63. Supposing their ages at the time of
their father’s death to have been 17 and 14, what was the sum invested
in ench case, and what was each dauglhters fortune ?

H. H. A _ 52
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86, A number of three digits in scale 7 when expessed in scale 9
has its digits reversed in order: find the number.
[Br Jomxw's Corn. Cami]

87. If the sum of m terms of an arithroetical progression is equal
to the sum of the next » terms, and also to the sum of the next p

1 1
terms ; prove that (m+ #) (7:} h_:'-o) =(m+mp) (— - —)

m
[ST Jorws CoLL. Cama]
88. FProve that

1 S _(_1_+_1__ _l_)"
G- G g \ys e T Ey)
{R. M. A, WooLwicH.]
89, 1f m is negative, or positive and greater than 1, shew that
13454+ (En— 1= am
[Emy, Conr. Cams.]
90. If each pair of the three squations
BEopetg =0, 2% putge=0, &' -pr+ga=0,
have a common root, prove that
PP PS4 (@ + Gt () =2 (D Py PaPLt PP
[3r Joun's CorL. Cams]

91. A aud B travelled on the same road and at the same rate from
Huntingdon to London, At the 50® milestone from London, 4 over-
took a drove of geese which were proceeding at the rate of 3 miles in 2
hours ; and two hours afterwerds met a waggon, which was meoving at
the rate of 3 milesin 4 hours. B overtook the same drove of geese at
the 45* milestone, and met the waggon ezactly 40 minntes before he
came to the 31" milestone. Where was B when A resched London ?

[Br Jurw's CorLn Cams.]

92, If a+d+etd=0, prove that
abe+bed + o+ dab =/ (be — ad) (oa — bd) (b — od).
[R. M, A, WooLwick.]

93. An AT, a P, and an K. P have o and b for their first two
terms : shew that their (n+2)* terms will be in G T. if

bh+2_a3n+2 ﬂ+1

[MaTa. Triros.]

'b—é"('gz?r_'?f{) =T
84, Shew that the coefficient of £ in the expausion of (-5‘.—_-3;‘;-:5)
in ascending power of & is F‘;:%’f ) ﬁ; and that the coefficient of 2%
{14 a2

in the expansion of

L s 2l (nl+ 4n4-2)

s [Emm. Corr, Cams.]
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95, Solve the equations:

-1
., 24yt =34 1 15
Vr—y

1 e
'u/x—y+é»\/:s+y=
[T Jomx's Corr. Cams.]

. I 1
. Find the value of 14, "~ — . .= i -
96 ind the value o +3+ §Y 33 87 in he form of & quad

ratic surd. [R. M. A. Woorwice.}

97. Prove that the cube of an integer may be expressed as the
difference of two squares; that the cube of every odd integer may be
so expressed in two ways; and that the diffexence of the cubes of any
two consecutive integers may be expressed as the difference of two
SGUATES. [Jesos CoLL, Cams.]

98, Tind the value of the infinite series

1 2 3, 4

E}'[—E"]'E’}'E'{".A [}‘JMM. (JOLL. CAJJ.BJ
. If pe=ys £ L C
% YRR AFErds Y
and gl G a
a Ui B wral R A TR
then brx—dy=a—c [CersTs CoLn. Cams.]

100. Fiud the generating fuuction, the sum to n terms, and the
ath ferm of the recurring series 1452 472+ 1725431 4. ...
101. Ifea, b, carein H. P, then
at+b  ct+b

—_ =,

W syt ey

(2) Déla— =2 et (bl + e (c—b)0%. [Pem. CoLn Caums]

102, If e, b, ¢ are o1l real quantities, and 2® - 30% +2¢® is divisible

by - « and also by z - b; prove thak either «=b=c, or a= - 2= —2¢.

(fmsvs Corr, Ox.]

103. Shew that the swm of the squares of three consecutive odd
numbers increassd by 1 is divisible by 12, but not by 24,

104. Shew that o_a‘c;_g is the greatest or least value of ws?+2ba4-¢,

according as « is negative or positive.

If a# 434+ 2+ g2t a2 +a%yt=2uyz (v +y+2), aod 7, ¥, 2 are all
real, shew that r=y =z [Br Jomn's Corr. Cams.]

32—2
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Wt
105. Shew that the expansion of 1-—-—1\{21 ¥

. 3 1.
is 34_1__.:} 3—+

5.7 ab
2.4°6 2. .

3.
T e Tﬁ‘}-..“..
106. If a, 8 are roats of the equations

224 prtg=0, a*4prgt+gt=0,

where s is an aven integer, shew that %, —g are roots of
at+ 1+ (ot 1pr=0. [PeMe. Corr. Caup,)

107. ¥ind the difference between the squares of the infinite
coutinued fractions

b b d d d

a-l-g-a-; Saf Sax B and ¢+ z-—

24 Dot Ge+
[Carmrs Coir. Cams.]

108. A sum of mouney is distributed amongst a certain number of
persons., The second receives 1s more than the first, the third 2s
more than the second, the fourth 3s. more than the third, and so on.
If the first person gets ls. and the last person £3. 7s, what is the
number of persons and the sum distributed ?

109. Solve the eguations:
) Sy T P

b4-e b eda

24yt xy .
@) S +atyi=13), ey =3

110. If g and b are positive and unequal, prove that
n-=1
ar b nl{a—b){ab) % .
[Sr Cara. Corn. CaMs.]

(g}

111. Express é%% as a continued fraction; hence find the least

values of z and # which satisfy the equation 396x— 763y =12,

112. To complete a certain work, a workman 4 alone would teke
on times a8 many days as B and ¢ working together; B alone would
take » times as many days as 4 and O together; ¢ alone would take
P times as many days as 4 and B together: shew that the numbers of
days in which each would do it alone ere as m+1 1n+1:p+1.

k2
=2

Prove also - 04— 4P -
A RS [R. M. A. Woonwick.)
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113. The expenses of a hydropathic establishment are partly con-
stant and partly vary with the number of boarders. Each boarder
pays £65 a year, and the annual profits are. £9 a head when there are
50 boarders, and £10. 13s 4. when there are 60: what is the profit on
each boarder when there are 8019

114, If 2% =22 -y, and #? is not greater than 1, shew that

s B B g 7
4(z+3+?+...)——y+§-+§+.‘.

[PErEREOUSE, CaMB.]

115, If
[27

are unequal,

ig2=a“—{:?3=%’ and ay=c% shew that when ¢ and o

(a® ~ B — B2E—0, or @+ ~ 2=,

118 If (Q+e+a?fr=1+ba+kba%+ ..
and (= 1P =g — 2™ g™ 2— ...
prove that (1} 1—&+b— ... =],

[3r
(@) 1-ko+Hee—.... zi]:._lé"

[B. M. A. WooLwich.]
117. SBolve the equations:

(1) (z—y)+2ab=as+by, zy+ab=bztay.
(2) 22—y +2%=8, 2ys— 2wy =13, z-y+z=2

118. If thers are » positive quantities a, ay,...a,, and if the
sguare roots of all their products taken ftwo together be found, prove
that :

_ — -1
Nagy+ i a@gt. .. «n—-g———(al+ag+......+a,,};

hence prove that the arithmetic mean of the square roots of the
products twe together is less than the arithmetic mean of the given
quantities. [B. M. A. WoorLwIcH.]

119, If Birttalpd=a?, and a4+ B=12t+y%=1, prove that
bat+abyS= (bt + oy [Ivpra Crvin Srvicm.]
120, Find the sum of the firat » terms of the series whose * terms
Br+1
(1) FQT:TT)” ©) (a+rib)znr.
[Br Jomx's Corl. CanMn.]

12]. Find the greatest value of @%}QT 5

are
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122. Solve the equations:
(1) 14at=T(1+aM
(2) Bay+Zz=xz+6y=29yz+432=0,

123. 1If o, a,, 2,, &, are any four consecutive coefficients of an
expanded binomial, prove that

| s 2a,

+ = . UEENS' CoLr,

i ) [Queens' Covn, Caxe.],

124 Separate rie-s-$ into partial fractions; and
% ;

Wz ) (@3- 1)

find the general term when -8 iz expanded in agcending powers
g P —dr—4

of =

125. In the recurring series

2 - %x+27:'3+2.1‘3+5x‘+?'z5+

the scale of relation is a quadratic expression; determine the unknown
coefficient of the fourth term and the scale of relation, and give the
general term of the ssries. [B. M. A, WooLwich.]

128, If x, , 2 are unequal, and if

—~ )2 oy
90— 3y~ y"“') , and Ea—azz(izﬁ)- ,
AT
then will 2a+&r=g—tﬂ- ,and r+y+z=a  [Mara. Trreos ]

127. Selve the equations:

(1} ay+6=2x—2% ay-9=2y-3~

@ (criose=(iy)oed, biosz =g,
128, Find the limiting values of

(1) wNedra-rttad whenzs=c.
et Br—4/3x
V3a+z- 247

123. There are two numbers whose produet is 192, and the quotient

of the arithmetical by the harmonical mean of their greatest common

25

measure and least common multiple is 32§ : find the numbers,
[R. M. A, WooLwicr.)

2

, when 2=a. [Loxpox UrivErsITy.]
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130. Solve the following equations :

(1) :/1-33:'{‘3?" 33z —3T= .
@) W1—33+M/1t§§=a,1
T ey TR, |

uNT—F+bafT—z=s, |

131, Prove that the sum to infinity of the series

1 1.3 1.3.5 .23 38
9'3—3 - m + ngb—— e 18 o1~ EJE' [LIATH. TR]POS.]

132, A number consisting of three digits is doubled by reversing
the digits; prove that the same will hold for the number formed by
the first and last digits, and also that such a number can be found in

only one scale of notation out of every three. [Mara, Taipos.)
133. Find the coefficienta of #'2 and 2* in the product of
1423 2 _
=309 and 1-2+4% [R M. A Woorwicr.]

134 A purchaser is fo take a plot of land fronting a street; the
plot is to be rectangular, and three times its frontage added to twice
its de}ﬂ;h is to be 96 yards, What is the greatest number of square
yards he may take? [Lowpox UNIVERSITY.]

135. Prove that

(G+btetdit{ath—c—df+(a—bte-di+(a—b-etd)
—{a+dte—di~(etb-cidpi-(ea-btctdy-(-a+b+etd
=182 abed,
[Triv. Corr. Cawms.]
136. TFind the values of a, 5, ¢ which will make each of the ex-

pressions zA+ et +batter+ 1 and 24+ 2a0’ + 2008 + 2ew4-1 o perfoct
square, jLowpox UNiversITY.]

137, Solve the equationa:
Af— F T v
Nty Ey e ega
Nrty+ ey
_— 9

2) V214420 -1 e

@ ¥ v T
138. A former sold 10 sheep ati 2 certain price and 5 others at 10s.

less per head; the sum he received for each lot wag expressed in pounds
by the same two digita: find the price per sheep.

n
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139. SBum to » terms:
{1} En-D+2{2n-3)+3(2n-5)+
(2) The squares of the terms of the series 1, 3, 6, 10, 15....
(8} The odd terms of the series in {‘2). [Taix. Corr. C'aMB.)
140. 1If a, 8, v are the roots of the equa.tmn 4+ g:r+r 0 prove
that 3(a2+ﬁ2+y3)(aﬁ+ﬁﬁ+y5 =5(a*+ 8%+ %) (at+ 51+
[Br Joax’s COLL Camz]

341. Solve the equations:

{1y z(3y-5)= 4.} (2) #3483+ 2=495
y(2r+Ty=27]" s4y +z= 15
zyz=105

[Trix. Coru, CaMB.]

142, If , b, ¢ are the roots of the equation z* +gx~2-.- 7=0, form the
equation whose roots are a+b— —g, b4c~a, cta—b

143. Sum the series:

1} a+n-lz+(n—-2a+.. . +20 21
(2) 3—2-27%—162°— 2874 — 67625+ ... to infinity;
(3) 6+5+14+23+404... to n terms.
[Ox¥orp Mopa]
144. Eliminate r, y, z from the aquations
alpy-lezl=ag 1, atytz=d
Bt l=d, B2 S =4,

and shew that if =, g, 2 are all finite and numerically unequal, b cannot
be equal to d. [B. M. A, WoorwioR.]

145, The roots of the equation 32*(22+8)+16{z* -~ 1)=0 are not
all unequal: find them. [B. M. A. Woonwica.]

146. A fraveller set out from. a certain place, and went 1 mile the
first day, 3 the second, 5 the next, and so on, going every day 2 miles
more than he had gone the preceding day. Affer he had been gone
thres days, 2 second sets out, and travels 12 miles the first day, 13 the
second, and 30 on. In how many days will the second overtake the
first? Explain the double answer.

147. TFind the value of
11 1 .}_L L
3+2+ 1+ 3+ 2+ 14777
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148, Solve the equation

234 Bur?+ 8 (0% = be) 2 4+ a3+ B3 — Babe=0.
[I¥pra CrviL SERVICE.]

149, If = is a prime number which will divide neither e, b, nor
a+b, prove that a® 2b—am B2 +an D3~ ... 4ab"~? exceeds by 1 a
multiple of #. [3t Jomw's Corr. Uaxn.]

150. Find the nth terme and the sum to » terms of the series whose-
sum to infinity is (1 - bz (1 —ax)—2(1 - bx)~-2,
[OzrorD Mopa.)

151, If @, b, ¢ ave the roots of the equation #3+pz+¢=0, find the .

2 248 il
equation whose roots are 5 _;_cz’ ¢ j,;a s d j&'

[Trix. Corr. Camp.]
152. Prove that
(y+z— 200z 42290+ (x+y - 2 =18 + 57 +2% — ye — 2o — 2y},
[CLarE CoLb. CaxB.]
153. Solve the equations:

(1} 23— 30x+133=0, by Cardan’s method.
(2) 2 — 4zt - 1023+ 402° + B — 36 =0, having roots of the form
+a, +h ¢
154, Tt is found that the quantity of work done by & man in an
hour varies directly as his pay per hour and inversely as the square
root of the number of hours he works per day. He can finish a piece
of work in six days when working 9 hours a day at 1s. per hour. How

many days will he take to finish the same piece of work when worling
16 hours & day &t 1s. Gd. per hour?

155. If s, denote the sum to # terms of the series
1.2+2.3+3.4+....
and o, that to n—1 terms of the series

1 + 1 + 1
1.2.2.4 2.3.4.5 3.4.5.0

shew that 188,001 — 8y +2=0.

-

[Masn. Cone Ox.]
156. Solve the equations:
(1) (122 -1){62~1)(4z - 1)(3z—1)=5.
1(z+1){z=38) 1 (z+3)(e—5) 2 (x+5)}{z—7) 92
@3 (m+9)(v—4) ' O (e+4)(z—6) 13{z+6)(z-8) 585
[Br Jouw’s CoLr. Came.]
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157. A cottage at the beginning of a year was worth £350, but it
was found that by dilapidations at the end of cach year it lost ten per
cent. of the value it had at the beginning of each gear: after what
number of years would the value of the cottage be reduced helow £251
Given log,,3="4771212. (B M. A Woorwron.)

158, Shew that the infinite series

4.7 4 1‘4.7.10_{_
8.12 4.8,12,16 77
5.

2.

- . 8 2.5.8.11
§+6.12 6.12.18 ' 6.12.18.24

are equal. [PETRREOUSE, CaMn]

1 1.4 1
M+ tiata
2 9.5 2.

+ +ony

159. Prove the identity

& zF-a) z{z-a){zr—§) )
{1 it T S| _
s alwta)  2(zia)lrts)
A
2 et -at)  aP(e - ad) {2 )
St e T e

[TriN, Corn, CaMn.]

160. Ifn is a positive integer greater than 1, shew that

%8 — 5md 4 60n? ~ 561
is a multipls of 120. [Wanrax Cotr. Ox.]

161. A number of persons were engaped to do a plece of work
which would have occupied them 24 hours if they had commenced at
the same time; but instead of doing so, they commenced at equal
intervals and then continued to work till the whole was finished, the
payment being proportional to the work done by each: the first corper
received eleven times ss much ag the last; find the time oceupied.

162. Solve the equations:

-

V) =iy
#2-3 2T-3 B4

(2) P+—a(y+z)=dl,
Bt -y 24 a)=107
a2yt s (zty) =2 [Perte. Conn. Camp)
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163. Solve the cquation
ad(h ) =) (@~} + D{e—a)(w —6) (w—a) + e —8){x— a) (& — b)=0;
also shew that if the fwo roots are equal

1 1 1 ) |
T + T + Ja =0, [Br Jomx's CorL. Camn,)
164, Sum the series:

(1) 1.2.4+2.3.5+3.4.6+... to = terms.
1% 98 3 .

2) m+—~+=+.. toiok

W ETEE

165. Shew that, if &, b, ¢, & be four positive unequal quantities and
s=a+b+c-+d, then
{s—al(s—D)(s—c¥s—d) > Blabul.
[Prrerrouse, Cams.)

166, Solve the equations:
—_— — 5 o . )
() Wate-vy=a=; Ve, Ve—a—vyta=2Ja.

@ a+y +5=~"“+y2+22=% (3427 =3,
[Mare. Trreos.}
187. Eliminate f, m, » from the equations:
lz+my +ne=me+ay+z=nv+ly+me=F2{E+mP4n?) =1
168. Simplify

alb+e—af+... 4. .. +(h+e~a){eta—bila+d-c)
bte—a)+..F...—(re-ai{eta~b){atb—c)’
[Mara. Trrros.]

168. Shew that the expression
(&% - g+ (g = 2P + (22~ 2y’ ~ 3(2% - ) (y? - ex) (F — )
is a perfect square, and find its square root.  [Loxpox Universiry.]

170. There are three towns 4, B, and C'; a person by walking
from A to B, driving from B to C, and riding from € to 4 makes the
journey in 154 hours; by driving from 4 to B, riding from B to €, and
walking from ¢’ to 4 he could make the journey in I2 hours. On foot
he could make the journey in 22 hours, on horseback in 8} hours, and
driving in 11 hours. To walk a mile, ride a mile, and drive a mile he
takes altogether half an hour: find the rates at which he travels, and
the distancey between the towns.
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171, Shew that »7 —7n+4 1423 —8» ia divisible by 840, if » is an
integer uot Jess than 3.

172, Solve the equations:
(1) V@ +1%y+4/57T+120 =33, wty=23.
u(y—z)_ 2y—a)_, Y-z - xx-2)

@ oz P oe—y ' w-y
[Mara. TriPos.]

'173. If s be the sum of # positive unequal quantities ¢, b, c..., then

3 s 5 nt :
ettt T Ao [Mara. Trreos.]

174. A merchant bought a quantity of cotton ; this he exchanged
for oil which he sold, Ie observed that the number of cwt. of cotton,
the number of gallons of oil obtained for each cwt, and the number of
shillings for whick he sold each gallon formed a descending geometrical
progression. He caloulated that if he had obtained cne cwt. more of
cotton, one gallon more of oil for each cwt., and s more for each
gallen, he would have obtained £508. 9s. more; whereas if he had
obtained one cwt. less of cotton, one gallon less of oil for esch owt., and
1s. less for sach gallon, he would have obtained £483. 13s less: how
much did he actually receive ?

175, Prove that
Shte-—a—afb-cie-2)=16{b-c){e—a)a~b){z—a)z—b)(x—q)
[Jmsus Corr, Cams.)
176. Xf o, 8, v are the roots of the equation 23— pad+r=0, find the

equetion whose roots are E—l—-? ) y—;f, iyﬁ. [R. M. A. WooLwich.]

177, If any number of factors of the form e?43* are multiplied
together, shew that the product ¢an be expressed as the sum of two
BQuATes,

Given that {(a®+ 5%+ d®) (& +/2) (g + 1) =p2+¢% find p and g in
terms of @, B, ¢, d, ¢, £, ¢, A . ﬁonnon UNIVEREITY. |

178. Bolve the equations
22+y42=61, £2-pr=01, [R. M A WoorLwics]

179, A man goes in for an Examination in which there are four
papers with a maximum of m marks for each paper; shew that the
numnber of ways of getting 2m marks on the whole is

%(m+ 1)(2m2 +4m + 3} [Mare Triros]
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180, If 4 B are the roots of a2+ px+1=0, and y, & are the xoots
of a?+gr+1=0; shew that (¢~ yHB—y)a+ 8B +8) =g8—pt
[R. M. A, Woorwicr.]
18l, Shew that if e, be the coefficient of z™ in the expansion of
{1+ )%, then whatever n be,

a'u"a'1+a'2_‘ _+( _1}m-1amml= ('?3:— 1)(ﬂ_i};vi(n—m+1)(_I)m—]’

[New Corr. Ox.]

182. A certain nuraber is the product of three prime factors, the
sum of whose squares is 2331, There are 7560 numbers (including
unity) which are less than the pumber and prime to it. The sum of
its divisors (including unity and the number itself) is 10560. Find the
number. [Corrus CoLr. Cams.]

183. Form an equation whose roots shall be the products of every
two of the roots of the equation 3 — e+ bo+¢=0.
Solve completely the equation

Sb bt +2=122% 11222
[R. M. A. WoorwicH.]

184. Prove that if # is a positive integer,

n"-n(n—-ﬂ)“+??—~:"

185, If (B/64-14)+1=N, and if F be the fractional part of ¥,
prove that ¥ F=20m+1, [Baar. Cort. Camz.]

186, Bolve the equations:
(1) s+y+2=8 22+yi+P=0, 2+33+2"= -1
(2) 21— (y-z2t=al, yl—(z—2)P=D% 2—(r—yP=ci
[CrRrar's Corr. Cann ]

187, At a general election the whole number of Liberals returned
was 156 more than the number of English Conservatives, the whole
nuwber of Conservatives was 5 more than twice the number of English
Liberals. The number of Seotch Conservatives was the same a3 the
number of Welsh Liberals, and the Scotch Liberal majority was equal
to twice the number of Welsh Clonservatives, and was to the Irish
Liberal majority as 2 : 3. The English Conservative majority was 10
more than the whols number of Iriaﬁl members, The whole number of
members was 652, of whom 60 were returned by Scoteh constituencies.
Find the numbers of each party returned by England, Scotland, Ire-
land, and Wales, respectively. [8r Jomy's Corn. Came.)

188. SBhew that afle— b+t —~)+ i (h—a)
=(b~e){o- a){a - b)(Su®+ Sl +abe).
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189. Prove that | ¥ 3a? 3a i={a—1)‘5.

I
f a2 a?+2¢ 2a+1 11
li ¢ Bet+l a+2 1|
I 3 1. (Barr, Corr. 0x.]
1 1 1 1 . .
180, If =+ >+ — + — =0, prove that a,d, ¢ are in harmonical
¢ ¢ a—-b e-b :
progression, unless b=a+c. [Trrv. CoLL. CaMB]

191. Solve the equations:

(1) 2*-132%+ 152 +189=:0, having given that one root ex-
ceeds another root by 2.
i2) wt—4x?+ Br+35=0, having given that one root is
544/ 3 [R. M. A WooLwick.]

192, Two numbers ¢ and b are given; two others o, b, are formed
by the relations 3a,=2a+b, 36, =c-+2b; two more a,, b, are formed
from e, &, in the same manner, and so on; find @, b, in terms of @ and
b, aud prove that when # is infinite, &,=5,. [R. M. A, WooLwricH.)

183, If 4y 4o+ w=0, shew that
wr{w+ 2} +yz (w— ) 4wy (w-ty P
+am(e — Y4zl + 2 + wy (w — 2 + dayrwe =0,
[Mare. TrIPS.]

1Me If w o+ c_a'—’%b_?{_cﬂ be not altered in value by intexchanging a
rair of the letters a, b, ¢ not equal to each other, it will not be altered
Ly interchanging any other pair; and it will vanish ife+b+e¢=1

[Mare. Trreos.]

195. On a quadruple line of rails between two termini 4 and B,
two down trajns start at 6.0 and 6.45, and two up trains at 7.15 and
8.30. If the four trains (regarded as points) a.lll pass one another
simultanecusly, find the following equations between =z, 2y, oy, x,, thelr
rates in moiles per hour,

3z, 4dm+Sz;  4m+10z
Ty— &) - Ty Ty - Zt+ay

whare m is the number of miles in 4.5, [Trix. Corn. Cams.]

196. Prove that, rejecting termns of the third and higher orders,

- -%
(-2 ha-p™_ 1 1.,
v e R L S

[Trix. Corr. Camp.]
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197. Shew that the sum of the products of the series
a,a—b,a-2b ... , e—{n—1}b,

taken two and two together vanishes when # is of the form 3m®—1,
and 2a=(3m - D{m+ 118

198. If n is even, and a+8, a—@3 are the middle pair of terms,
shew that the sum of the cubes of an arithmetical progression is

ra {a?-+ (n2 - 167 .
199, If g, b, ¢ are real positive quantities, shew that

11 1 af+b84-c8
E+5+c< a2b3c?

[Tryx, Corr. Cawms,}

200. 4,8, and ('start at the same time for a town o miles distant;

A walks at a uniforin rate of % miles an hour, and £ and (' drive at a
uniform rate of » miles an hour. After a cerfain time B dismounts
and walks forward at the same pace as 4, while ¢ drives back to maeet
A; A gets into the carriage with ' and they drive after B entering the
town at the same time that he does: shew that the whole time occupied
@ Sviu ho ' PererEOUSE, CaME

7 Fuxe o (Potez ’ 1

201. The streets of a city are arranged like the lines of a chess-
board. There are m streets running north and south, and = east and
west. Find the nurmaber of ways in which a mau can fravel from the
N.W. to the 8.E. corner, going the shortest possible distance.

{OxForD MoDS.]

202, Solve the oquation ~ & +27 +~55 — &=,
[Barw. Cosn Ox.]
203. BShew that in the series
ab+ (@) (b +2)+ (e +22) (b+ Ba)+ ... ... ta 2n terms,

tho excess of the sum of the last n terms over the sum of the first n
terms i to the excess of the laat term over the first as »? to $n—1.

204, Find the »* convergsut to

1 1 1

4 4 4
® 5T ¥ 5F
205. Prove that
(o) (y -~ 2+ {a— gtz - apt+{a - (x -y
=2 {(a~pHa -2z -y z -2 +{a—:P (e -2} (y -2 (y - »)*
+la-22la-y) -2l (z -3,
[PererHOUSE, (aMB.]
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206. If a, B, y are the roots of 23+ gw+r=0, find the value of
- Matn mﬁ+n+my+ﬂ
. ma-n m-n  my—n
in terms of m, n, g, [QueEews’ Corr, Cams.]

207. In England one person cut of 46 is said to die every year,
and one out of 33 to be born. If there wers no emigration, in how
many years would the population double itself at this rate? Given

log 2="3010300, log 1531 =3-1845752, log 1518=23"1812718.

208. If (1+or+2t=aytartax®+.. ... , prove that
nin—=1) nl
Uy — Ny + (1.2 oy = .. +{~ 1:}"?-‘-.I ot a,=0,

unless  is a multiple of 3. What is its value in fhis case?
(S Jomw's CoLu, Caxn.)

209, In a mised company consisting of Poles, Turks, Gresks,
Germans and Italians, the Poles are ope less than one-third of the
number of Germans, and three less than half the number of Ttalians,
The Turks and Germans outommber the Greeks and Tialians by 3;
the Greeks and Germans form one lese than half the company; while
the Italians and Greeks form seven-sixteentha of the company: dster-
mins the number of each nation.

210, Find the sum to infinity of the series whose n% term is

(n+1}n"Yn$2)~4(—)m+l [Oxrorp Mons.]

211. If = is & positive integer, prove that

2(f-1) AL -2
e ETE I
l}n(ns-—-l)(nf—ﬂz) ...... {(n? -4
+ (_' ) L’l ] 1
212. Find the sum of the series:
(1) 6, 24, 60, 120, 210, 336,...... to n terms.
{2) 4-9r+41627- 255" 4364 — 4925+, . to inf.

1.3 3.5 5.7 7.9 :
(3) T+——2-2—+—2T+~§;-+......tomf.

T g (UL §

[Pems. Corn. Camg.]

213. Bolve the equation ! 42  6r+2 8r+]
| Bz+2 9243 120 |=0.
I Br41 18 16x+2

[Kine's Conn. Cams.]



MISCELLANEOUS EXAMPLES, 513

214, Shew that .
(1} a®(1+5%)+ 031 + )+ 2 {1 + ) > 6abe,
(2) mlarretbrtegertes V> {aP4+bP Lo, Yat L B4+ L),
the mumber of quantities «, b, ¢,... being n.
215. SBolve the equations
vr=alytz)+a
zm=alt+z)+ 8.
sy=a(r+y)+y [Tare. Coni. Caunl]
216. 1If % be & prime number, prove that '
1 1 1
-1 w1 L2 nel = — m—1 _
1{am=141)4-2 (3 +2) +3{4 +3)+...+{n 1} (n +n-—1)
is divisible by = > [Qoeex's Corr, Ox.]
217. In a shooting competition a man can score 5, 4, 3, 2, or O

pointa for each shot: find the number of different ways in whick he
can score 30 in 7 shots, [PExE. CorL. CaMB.]

218. Prove that the expression &—bs%+ca’+dr—e will be the
product of a complete square and a complete cube if

1% _9d_5_
5T b e & _

218, A bag coatains 6 black balls and an unkrown number, not
greater than six, of white balls; three are drawn successively and not
replaced and are all found to be white; prove that the chance that

2 black ball will be drawn next is g—;-; [Tus0s Cou. Came]

290, Shew that the sum of the products of every pair of the
aquarea of the first # whole numbers is 3%) n{n?~1)(4n?— 1) {5a -+ 6).
[Caroe Corr. CamMB]
20h - 2ro— -
991, If ° @ c)+16 (¢ a)+72(“ b)

T z—b r—¢

that a(b—c)+B{e—a)+y{(x—0)=0.

=1 has equal roots, prove

222. Prove that when n is a positive integer,
n=2on~1 _n=2 gn-3.4 (_ﬂ_'___i)(i"_:i) on =5
1 19

h _(n—w(ES)(n_s)g,_qw
| [Crare Cour. Camp.)
H H.A, 53
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293, Solve the equalions:
(1) 224 2y2=y2+2er=2" 322y +3=T6.
(2) ztytr=atdte

‘?+2+§.=3
a b ¢

ax+by +ez=be+ca+ab
: [Cerisr’s CoLr. Camp.]

924, Prove that if each of m points in one straight line be joined
to each of » in another by straight lines terminated by the points, then,

excluding the given points, the lines will intersect %mﬁ,(m -I}n-1)

times, [Mara, Triros.]
295, Having given y=x+22+2% expand 2 in the form
y+ay? it et Hdyt L ;
and shew that a?d —3abe+28= -1, [Barr. Corn. Oxj

296, .A farmer spent three equal sums of money in buying ealves,
pigs, and sheep. Fach calf cost £1 more than a pig and £2 more
than a.sheep; altogether he bought 47 animals. The number of pigs
exceeded that of fhe calves by as many sheep as he could have bought
for £9: find the number of animala of each kind.

227. Express log 2 in the form of the infinite continued fraction

1 1 2 32 nt .
I_‘F 1—“; iT{: ﬁ — e [EULER.]

228, In a certain examinafion six papers ara set, and to each are
zasigned 100 marks as & maximum. SBhew that the number of ways
in which a candidate may obtain forty per cent. of the whole number
of marks is

4 @ng.u_—_ﬂ_[_lg,_lf—g . (Oxrorp Mobps.]
ib {240 " 139 |38

228, Test for convergency

x 1.3 4% 1.3.5.7 25 1.3.5.7.9.11 o
$72.2°679.4.6.8 1072.4.6.8.10.12" 14 "~

230, Find thé scale of relation, the n® term, and the sum of »
terms of the recurring seriea 1+6+404+288+.......

Shew alao that the sum of «# terms of the seried formed by taking
for its r* term the sum of » terms of this series is

: ‘%(‘22"—1)4‘%(2&‘-1)—3—?- [Catus CorL. Cams.]
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231, It is knowa that at noon at a certain place the sun is hidden
by clouds on an average two days out of every three: find the chance
that at noon on at least four out of five apecified future days the sun
will be shining. [Queew’s Corr. Ox.]

232. Solve the eguations
2y —2P=al
P +{z—-z)t=by, - .
2t (x-yr=2 [Buy. Copr. Cams.]

233. Eliminate a, , z from the equations:

w—zy—axz _yProyp-yr P-zp-zy
¢

po 3 , and art+by+ea=0.

[MatE. TRIPOY.]

234. If two roots of the equation 4%+ pa?+4 gz+r=0 be equal and
of opposite signs, shew that pg=r. [QureNng Corr, Caus.]
235, Sum the series:
(1) 1+Ba+32 4 aten?,
25 52 Sn24-19n 48

2 12,91 33 + 92 93 4% +o nE (4 19 (nt 278"
[Exy. Cobr. Camp.]

936. If (1+a%) (1+a52%) (1 +a%10) (1 4 alTas)... ..

=1+4204+ A28+ a4 L
prove that 4., , ,=ad,,, and A, =a?4,,; and find the first ten terms
of the expansion. [Corprs Corr. Cams.]

237. On a sheet of water there is no current from 4 to B hut a
current from 8 to ¢'; a man rows down stream from A to ¢ in 3 hours,
and up stream from € fo 4 in 34 hours; had there heen the same cur-
rent all the way a8 from B to C, hia journey down stream would have
ocenpied 23 houra; find the length of time his return journey would
have taken under the same circuunstances.

238, Prove that the 't convergent to the continued fraction
3 3 3 gl g (=1t

—_— e 13

2+ ...... W__i'j'm-
[Bxm. Core. Came.j

lﬂl
+
]

239. If all the coefficients in the equation
204 P2 Pt 2+ P =F () =0,

be whole numbers, and if (0} and F(1) be each odd integers, prove
that the eguation cannot have a commensurable root.
[Lownoy UNIVERSITY.]

33—
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240. Shew that the equation

Vextat+nba+ B+ ar+y=0

reducés to a simple equation if e+ Jfb+fe=0.

Solve the equation

Wt 152 — T+ A48 —8Br—11 —4/22° -~ 5r+5=22—3
. 241, A bag contains 3 red and 3 green balls, and & person draws

out 3 at random. He then drops 3 blue halls into the bag, and agai
draws out 3 at random. Shew that he mary just Jay 8 to 3 with

advantege to himself against the 3 latter balls being all of different
colours, [PEME. Corr. Cama.]

242, Find the sum of the fifth powers of the roots of the equation
at - Tt dr - 3=0, [Lowpon UnrversiTy.)

243, A Geometrical and Harmonical Progression have the same

P, g, +*2 terms a, b, ¢ respectively: shew ibat
alb-clloga+b(c—a)logbte{a—5)loge=0,

[Curier's Corr. Camp.]

244, TFind four numbers such that the sum of the first, third and

fourth exceeds that of the second by 8; the sum of the squares of the

first and sscond ezceeds the sum of the squares of the third and fourth

by 36; the sum of the products of the firat and second, and of the

third and fourth is 42; the cube of the first is aqua.l £o the sum of the
eubes of the second, t}:nrd, and fourth. -

245, If T, T, .1 Tp.q be 3 consecutive terms of a recurring series
connected by the relation 7, ,=e7T, ., —bT,, prove that

;: (T s —aT Ty +5T.% =n constaat,

246. Eliminate &, y, 7 from the equations:

i 1 1

L4l 24 872
x+y+z s B ty?iyat=b
R R A aye= B

[Esu Cornr. Cams.]
247. Shew that the roots of the egqustion

2 —paibga?- rx+§;=0

are in proportion. Hence solve xt— 122434 4722 - 720 + 36 =0,
»
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248. . can hit a farget four times in 5 shots: B three times in 4
shots; and ¢ fwice in 3 shots. They fire a volley : what is the pro-
bability that two shots at least hit? And if two hit what is the pro-
bility that it is ¢ who has missed 1 (37 Carm, Corr. CaMs.]

249, Sum each of the following series to # terms:
(1) 140-14+047+284794......;

(2 _ 2.2__+ 1.%2 : f.9% 18394 ‘
) T3 At R ETI s 6T aE g T

(3) B+o+92% 4254332 b+ 12028+ ...
[SEconp PupLic Exau. Ox.]

250, Solve the equations:
(1} P+yzed=an) () xy+e-a)=q
z’+zx+aﬁ=ay,} yEte—y)=»,
22+ oy + 3t = va. 24y —zy=c
[PrerrHOrsE, (AMB.]

1 1. 1 1 . :
251 If - +5+E—- P and » is an odd integer, shew that
1 1 1 1
P e

If u® - o8 Hute?(u® — v%) +duw{l — w%?)=0, prove that
(12— 0 =16u22 (1 — ¥} (1 ~ %), [PruB. Corr. Caun]

262, If xty42=3p, ys+zv+ay=3y, zys=r, prove that
(g+e-aHe+ax—gyHa+y —2)= —27p%+ 36pg — 8r,
and +ez—zP+(e+2—-yP+(r+y —2P=27p%— 2r.

263, Find the factors, linear in «, v, 2, of

{a(d+c)a?+0{c+a) Y+ c(a+b) ) — dade (22 + 33+ 25 ax?+ By c2%).
[Caros Conr. Cams.]

x@+y!+ T+y+r (x+y+s)s+y+l
254, Shew that (_ﬁy_*_{) T A i .

[St Jomw's Corn. Cams.]

- ﬁ%}—}=ﬂ, proeve that

1-2
r=a —r (m4r—1}1
E,Zx{_l) rir=-Di@m-n! =~

[Peums. Corr. Cama.]

955, By means of the identity {1
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256. Bolve the equations:
(1) ar+dytei=sxtaytb=yz+bat+a=0.
2) a+y +e2 —u= 13
Byt -ul= 6,]
.1:3+y3—z3+u3=218,J
ry+ru= 45,

257. 1f p=g nearly, and » >1, shew that.

a+tLp+(r-1)g 10)
n-Lp++lg

0l agree with unity as far as the r** decimal place, to how many
places will this approximation in general be correct? [Marn. TriPos]

- 258. A lady bought 541bs. of tea and coffee; If she had bought
fve-sixths of the quantity of tea and four-fifths ‘of the quantity of
coffee. she would have spent nine-elevenths of what she had actually
spent; and if she had bought as much tes as she did coffee and wice
versd, she would have spent 5s more than she did. Tea is more ex-

nsive than coffee, and the price of 61bs. of coffee exceeds that of
2]be. of tea by 5s.; nd the price of each.

259. If s, represent the sum of the products of the first » natural
numbers taken two at a time, then

2 1 P 11
3l+4?+ ...... +‘a +a —2—-4&
[Catos Corn. Came.]
260, TIf L. ¢ 2

P+ 3gab+rh?  pact+q(bc—a?)—rab  pd - 2gea-trad
prove that P, p; €, ¢; and &, + may be interchanged without alterin
the equalities, [Mare TrIPOS,

261 If u+ﬁ+-y=0, shew that

r;“"‘3+§3‘”3+-y"+5=aﬁy{a“+,8“+1ﬂ‘)+%(a”+ﬁz+'y’)(a“+1+,B“+1+y';+1)-
[Caws Conrn. Came]
262, If g, B, v & be the roots of the squation
st padtgr? +ra4s=0,
find in terms of the coefficients the value of S(a-8)2(y— 82
[Lowpox UNIVERSITY.)
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263. A farmer bought a certain mumber of turkeys, geese, and
ducks, giving for each bird as many shillings as there were birds of
that kind; altogether he bought 23 birds and spent £10. 11s.; find
the number of each kind that he bought.

264. Prove that the equation
(y+2- 823 4 (et 2 —8y) ¥ +(r by — 823 =0,
is equivalent to the equation
Ly~ yls - 2(z— =0 )
[Sr Jouw's CoLr. CaMB.]

. & b ¢ d
265. If the equation Pyt e sratira

equal roots, then either one of the quantities & or & is equal to one of
the quantities ¢ or d, or else C%+ % = % + }Z Prove also that the roots

2b
a+b’

have a pair of

are then —a, —a,0; -5, —b,0; or0,0, ~

{Mars, Tairos.]
266. Solve the equations :

(1} w+ytz=ab, 2-t+y- 42" =u"1h, sys=a’
(2) ayztbytor=brrtertar=crytazt+dy=a+d+e
[SEcowp Pusric Exam. Oxrorp.]
267. Find the simplest form of the expression
@ + & +
@—B8)a—yXa-8Ka~e " (B-a)B~-y)B-B—e)
3
€

METIEr ca e Y
{Lowpox Unrversrry.]

268. In a company of Clergymen, Doctors, and Lawyers it is
found that the sum of the ages of all present js 2160; their average
age i3 36 ; the avarage age of the Clergymen and Docturs is 39; of the
Doctors and Lawyers 3248 ; of the Clergymen and Lawyers 36§ If
each Clergyman had been 1 year, each Lawyer 7 years, and each
Doctor 6 yesrs older, their average age would have greater by
5 years: find the number of each profession present and their average

aged.

269. Find the condition, among ifs coefficients, that the expression

agrt+ 44,8y + 6a2'y? + dagrydtagyt
should be reducible to the sum of the fourth powers of two linear
expressions in # and g. [Loxpox UsniversiTy.]
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270. Find the real roots of the equations
2 4of put=al,  vw4uly+z)=be
puwttal=0  wutv(s+2)=ca,

S4ut e = wwtw(ety)=ab
[Maru, Tripos.]

271, It is a rule in Gaelic that no consenant or group of consonants
can stand immediately between a strong and a weak vowel; the strong
vowels heing @, o, #; and the weak vowels e and <. Shew that the
whele number'of Gaelic words of 43 letters each, which can be formed

_2(n+3 .
of # consonants and the vowels aeo is »_:1 +2“ where no letter is re-
peated in the same word. [Carvs Corn. Camg.]

272. Shew that if 2%+ y2=9:2, where r, , 7 are integers, then
Sr=r(l+2E-12), y=r{df+2lb-10), e=r(+})

where r, [, and k are integers. [Catrs Cori. Cams.]

273. Find the value of

574, Sum the series:

x2 2R Bt .
W) ggtgatigte f»omﬁ
2 2 [

® it eere Tt e e 9T

275, BSolve the equations: .

(1) 2ayz+3=(2r-1)(3y+1)(dz—1)412
=2z +1){8y—1)(4z +1)+80=0.

(2} Bur-Zuy=vriuy=3u+2:"=14; sy —10u.

278. Shew that atth ab ac ad {
ab BN Be bd ‘
ac be  e*4A  od i
ad bd e di4n |

is divigible by A% and fird the other factor. [Corrus Coin. Cams]
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277, If @, b, ¢,... are the roots of the equation

APt T parti b, X p,=0;
find the sum of o3+ 8+ + ..., and shew that
at bE gf & b ¢

Ly, b _Pnea{Bht —2py)
7t c+a+c+b+...-=_pl Sl 1 o S L

Pu
(5t Jouw's Cort. Cana.]
.\ l+2% .
978. By the expansion of T OF otherwise, prove that
(Br~1)(8n—-2) (3n-2){3n-3)(B3n—4)
-3+ =1Tg 1.2.3
L (30-8) Br—4) B3 —5) @n
1.2,.3.4

when 7 i3 an integer, and the series stops at the first term that vanishes.
[Mara. Tarros.]

279. Two sportsmen 4 and B went out shooting and brought
home 10 birda. The sum of the sguares of the number of shots was
2880, and the product of the numbers of shots fired by each was 48
times the product of the numbers of birds killed by each. If A had
fired as often as B and B as often sy 4, then B would have killed 5
more birds thae A ; find the number of birds killed by each.

P

980. Prove that 8(e3+53+c%2=9(a?+ be) (B2 4 ca) {3+ ab).
(Prus. Corr. Camn]
281, Shew that the n convergent %o
248 o _wo
E T P SRR Y T I

‘What is the limit of this when n is infinite? [Emna’s Conr. Cana.]

982, If £ i5 the n* convergent to the continued fraction
1 11 1 1t 1

shew that g, 4 s=bpg+{(Be+1) gga " [Querxs' Cori. CamMs.]

283. Out of « straight lives whoae lengths are 1, 2, 3, ... # inches
respectively, the number of ways in which four may be choser which
will form a quadrilateral in which a ciréle may be inseribed is

%8 {@n(n-2)(2n-5)-3+3(-1).  [Marm Triros.)
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284, If gy, u, are respectively the arithmetic means of the aquares
and cubes of all numbers less than » and prime to it, prove that
13 — Bnayy + 445, =0, unity being counted as a prime,

(8t Jow's Corn. Cawmn.]

285. If 2 is of the form 6m— 1 shew thut (y —z2)*+{z — &+ {w — g
is divisible by z2+4 4242t —yz —zx —2y; and If nis of the form Gm+1,
shew that it is divisible by

(224 g+ — o — 2 — 2y
286, If S is the sum of the m't powers, P the sum of the products
m together of the n quantities o, «;, @, ... a,, shew that
[n-1.8>ln-m. | m. P
[Carus Corx. Cams]

287, Prove that if the eguations
Bgr—r=0 and rad—2¢%c%— borwr — 2g5 - r2=0

have a common roof, the first equation will have a pair of equal roots;
and if each of theseis g, find all the reots of the second equation.

[Iwprs Crvin SERVICE.)

288, If ra2F -3ty N2 -t 2E 38 =0,
where o? stands for &+ y!-+2%, prove that

E+y+a{—zty+2)(@—y+o)(@+y—2)=0. :
[Trex. Coin. Cawm,

289. Find the values of a2, &, ... 2, which satisfy thé following
system of simultanecus equations:

z ,

xz n
%_m+%_%+m+%_%_h
%y Za Ty
+ o+ =1,
ag—by  ag—by Gy~ by
Ty ) Ty
C&“—bl+ a,‘_b=+-.-+ a‘.,‘—b,l—l'

[Lowpon UNIVERBITY.]

o

ot ot
w2 oyt |
W ou? og? )

290. Shew that | pz—a® ar—3* ay-22
-y ay—-2F£ yz—-at
Vay—2t yr—a® w3t

where rf=z24 3+ 2 and wl=yataz+ay.
[Tary. Corn, Cams.]
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201. A piece of work was done by 4, B, €; at first 4 worked alone,
but after some days was joined by B, aud these two after some days
were joined by €. The whele work could have been done by B and ¢
if they had each worked twice the number of days that they astually
did. The work could alse have been completed without B's ielp i 4
had worked two-thirds and € four times the number of days they actually
did; or if 4 and B had worked together for 40 days without C; or if
all three had worked together for the time that B had worked. The
number of days that elapsed before B began to work was to the
number that elapsed before ¢ began to work as 3 to 5: find the
number of days that each man worked,

292, Shew that if 8, is the sum of the products r together of

1, & &% 23 . ar~]

1
then 5 =5 1&(”-1)(”"‘210
LTS s -
[Sr Jourw's Cour. Camus]

293. If @, b, ¢ are positive aud the sum of any two greater than
the third, prove that

L—g\s a—a\t a—bye
(557 (5 () =
[Br Jomw's Conr. Camn.]
984, Resolve into factors
(at+bte)(bte—a){et+a—-b){ut+b— o) {a+ b5+ - Batlicd
Prove that
L{dd+ 8+ +(a By} =B+l + G +a)i+{a+ 8

+6B+7  (y+ ) +8(y+a)? (a+ B +6 (o + B (B+y)"

[Jrevs CorL. Cams.]

295. Prove that the sum of the homogeneous products of r dimen-
sions of the numbers 1, 2, 3, ... #, and their powers is

CU et _ 2] guapes o D®B=2) oy 4 terml
n-1 1 1.2

[Eru. Corr. Caws.]
206, Prove that, if » be & positive integer,

1- 3n+.'in__(13n;3) _ 3?‘(3%1_;}.(33“— 5)+

=2 =1
[OsrorD Mons.]

997, If z(2a—-y)=y(2a—s)=2(2e—u)=u{2¢—z)=05% shew that
o=y=z=4u upless H2=207% and that if thiz condition is satisfied the
equations are not independent. ' [MazE. Trrros.]
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2¢8, Bhew that if g, b, ¢ are positive and unequal, the equations
art+yzte=0, +by+2=0, yztarte=0, '
give three distinet triads of real values for x, v, z; and the ratic of thq

products of the three values of x and y is b(b—¢) : e {c—a).
[Oxronrp Mobs.]

999, If A=ax-by~c, D=lbetey,
: B=by—czc—ax, E=crtaz
C=gz—ar~by, F=ay+bz,
prove that ABC~ AP BEL . CFE42DEF
={a®+ b3 ¥ {ax + by + e2) (2% + 22+ 22).
{8eco¥p Pueiie Exau, Ogrorp.]

300, A certain student found it npecessary to decipher an old
manuscript.  During previous ekperiences of the same kind he had
observed that the number of worg: he could read daily varied jointly
as the number of miles he walked and the number of hours he worked
during the day. He therefors gradually increased the amount of daily

. exercise and daily work at the rate of 1 mile and 1 bour per day
respectively, beginning the first day with his ususal quantity. He found
that the manuscript contained 232000 words, that he counted 12000
on the first day, and 72000 on the last day; and that by the end of half
the time he had counted 82000 words : find his usual amount of daily
exercise and work. ’ :
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1. b3 2. 8 3. 1% 4 2. 7. BO.

a 36 .

9. y—-2x—;. 10. y_5z+=_—t-._,-. 11. 4.
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TOTT1EY 1527 . ) ’ ! ’

16. 2231 cubie feet. ik - TF- X
18. The regetta lacted 6 days; 4%, 6, 6 days.
20. 16, 25 years; £200, £250, 21, 1 day 18 hours 28 minutes,
22, The cost ip least when the rate is 12 miles an hour; and then the cost

per mile ie £, and for the journey is £9. Tz, B4.
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¥ X 1 3{3+43)
15. R 16. -594, 17. 5 18—
19. T(7+./42). 20 2. 21. 16,24, 36,... 22 2.
23, 2. 24, 8,12, 18. 25 2 6,18, 28 6, -3,1}.....



12.

14.

Il
18,

11.
16.

ANSWERS. 527

V. b Paces 45, 46,

1-a* e . g 3 l+z
I-ap 1-a TF © I
1 n 1
4—‘2,“—_2—5;-_—1. 5 & 6. *(i—:—‘x—)fs.
N 10. 40, 20,10 EETRER.
(1*?’)(1-—b!‘). . . » - . 4 ,1,.,.
z{z*~1) =m{r+l)a 22 {xm -1} oy {eyt— 1)
+ . 13. -
z-1 2 x-1 zy -1
2 1 23
Saai{1-.— =2 +2_ gutT
4pa+9(l 22,). 5. 1. 1 48. 18, m.2R_rH L
{14-2) {a"e™-1) ) a1, }r(:r-“- 1) —n% i
ac—1 r—-l
VI a. Pacxs 52, 53.
2 2 2 2
5 (2 . 13 . 63 - A A
M5 @ 3% 6 s A A T
6 and 24. 5. 4:9. 10. 2®{n+1).
in(n-i—l}(n3+n+3j. 1z, %n(u+1}{2n+7}.

. %ﬂ (m+1} (2?4 Bn 1),
A —d—nn+1)(n®—-n-1I).

W3-,

The s term=b+ ¢ (2r—1), for all values of n greater than 1. The first
term iR a + b +¢; the other termes form the A.P. b+ 3¢, b+5¢, b4+-Teo,. .

. 5leatn= ld)%az-i-(n 1)ad+“(”- D %

VI b Panu 56
1240, 2. 1140. 3. 16640, 4, 2470, - 5. 21321,
52. 7. HE79 8. 1840, 9, 11940, 1o0. 190,
300. 12. 18296, 14. Triangular 364; Squarse £900.
120. 18. n-1

VII. a. PacE 59.
333244, a2, 728026, 8. 1740137, 4. 27074 5 112022,
334345, 7. 17882126, 8. 1625, 8. 2012, 10. 342,
weh0001, 12. 231 15. 1466, 14, 7071, 15, ece.
{1) 121. (2) 122000. -

VIL b Paars 63, 66.

20305. 2. 4444, 3. 11001110, 4. 2000000, 5. 7338.
34402, 7. 6587, 8. BYTE. 9. 26011. 10, 37214,



528

11.
18.

3.

16.

18.

23.
28.

HIGHER ALGEBRA.

30084342, 13. 7TI0ted. 13. 2714B87. 14, -9046, 15 15116,

55 b1 2 5
- 2073, 17, 125-0125. 18, i 19, 3§
Nine, 21, Four. 22. Twelve. 23. Eight, 24, Eleven.
Twelve. 26. Ten.  30. 20497428
3928 9730851884824,
VIII. a. Pases 72, 73.
24,/2+./6 2 8+./6+./15
4 ‘ ‘ [ '
afb+b.Ja - \Jab (@t b) . -1+ Jai-1+,/2a (z - 1)
2ab ) ’ a-1 )
8,/30+ 5,/15 ~ 12 - 10,/2 o NIENBEAS
7 . N -—-—-"2—--—'—--
5 ¢ 1 : 03 1 3
3435, 283,249, 20438, 20 400,
5 4 1 3 2z 1 1 4 6
O 56, 0% 50 3338 D4 56,2808
n w181 1w 1 2 1
e — bty ot~ +aidhd - bi 10, $34-8%41,
1 1 3
2898 7448 Ti-,
now o1 3 1 o» ou 11
5345y, 3450 Bha #5384 434, 1-8 43
s 3 4 5 2 s 13. :
1783, 29438 27_3,204 3%, 2338, 29,
1 5 t 2 1 5 1
95,8953 2439, 98 9208 g% 94,
175 ¢ 3 2 1 n % ;B u
§(3°—3’+35—3“+3‘-'-1). 17. 29426120408 198,98 11
31 h
L
¢ ] ]
S'H:ii. _ 19, JB+/T-2.
SEoTHE/E. 3l 14y3-./. 22. 1+\/g—\/g.
2 +,/a— /3B, 2. 3-JT+/2~08 25 1+8.
24,/5. 7. 3-2,/2. 28, /14-2./2,

2,/3+ /5. 30. 3./3-./6. 1. ,/"“;z+\/g_
3a+b a—U 1+a+al /T g v af
Ber S T
1 1 i—a

7—‘—(\/'13+\/L"a)‘

~T—a? 2 2

11456 ,/3. 36. 289. at. %Ja.




38.
41.

43,

10.

13.
15.

19.

22,

A

11
14.

13,
21,
26.

29,

3.3+5.
3+ /5= 5-28607.

3a+,/ 02— 3a

B -2,/6.
zt-z+1.

8

-5

Ja2-1

22 °
*(2+8,/-1).
£2(1- /77
_3 1,
3713
1,3

'g"]‘gl‘

8522 +18x—12=0.

(p' - ¢°) 2* + dpgw - p* + =0,

52410354+ 18=0.
2246+ 34==0.

2T+ ag® - 2ab+ B2 =0,

Zax® + (4 —a%) 2® - Bac =10,

3, 5.

b —2ac

—F -

7. 22,
% - Bae

m LA

ate?s? — (b® - 2ae) (o

-15.

ANSWERS, 529
89. 3. 40. 8,./3.
2, FA+1+M+e-n¥2+ 32
a-1
4 .
VIII. b. PagEes 81, 82
2. -13, 3. VTl V]
3+4/22
5. —5—- 6. -19-6,/10.
g daz -1 2{8z2-1) /=1
. PN I 241 !
1. /-1 12. 100,
1. =(5-6,/-1). B 2144 ,/-3).
7. a+ /1) 18. *{{a+d)-{e-b) I}
4 /6, .
20, '7" - 1—4' . 21. 1,
2b (82— %
23. -—-GT-I:b‘_ 2.

IX. a. Paces 88—950.

2. mna?+(mP—mYzr-mn=0.
- 145+ 20=0.

&+ 2pr+pt -8 =0.

2t 2am+at+ =0,

623 4 1122 - 10x4-6==0.
B2+ 1T -4=0.

]

e+l

b (b9 - dac)
——
% & -2(p"-2) s+p’ (p7-4g) =0

4,
6.
8.
10.
12.
10
. % -3
Dot (3ac — 3?)

a7

23. 0.
b (17 - Bac)
@

+e7) 2 4 {07 - 2ae)? =0,

1s.

18, 20.

27.

nll= (L +n)ac.

2* ~ dnna — {m® — n¥)2 =0,

2and -2

o 2ipi-da -
¢

H, 4. A

IX. b, Pages 92, 93,

5. bax'-2ax+a=0.

$ - dp'g 4 2¢° 1
@ £ 1;3 z,
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1.

10.

13.

17.
20.
23,
28.

28,

38.

&3,

49,

52. .

-2 2.

HIGHER ALGEBRA.

*=T.

IX, c.

Pagr 96.

5 (- Unf=(In' ~ V) (mn' - m'n}.
7. (aa’ — bb) + 4 (ha' + Hb) (R’ + Wa)=0,
(B8’ ~ 2ac’ ~ 2a’c)®=(D" - 4uc) (b - 4’¢’); which reduces to
{ac’ ~ a'e}P={(ab’ - 2'b) (bc' - V'e).

19.

23,

28,

31

37.

Bl1.

X a. Pacus 101, 102
1 1 1 1
iy 2. :‘:5' +1. 3. 4, Z
25
n . —_—
3, on, 6 1, 2m T2,
1 25 1
ot . o=1, =z .2
3 3 10 1, 5 1. 2,0
-4, 13, %3 15 G
9, -7, 1= ,/-24. 18, 2, —4, —1,/7L
4 ~§, 1*:’65. 1. 2, -8 -3+3.5
. 1 84,7148 14 7,/37
D,g, ) . 24. 7, ——3-, -——6 .
7 84,415
5 -5 —%—. 2. L3
18 a4 a
1, 9, ‘-‘g. w. a, §, "g.
. 10
4, -3 3. 0, 5.
-85 1 -1=,/238
1, — &7, . Z, — 7
Py €. 33, 5
1 1
2: "§, 5, —g- 39. 3&., —da.
61,3 gz, TIENUT o 1y2
2 2
3 2
2’1 §- 44, 3, —1.
i3. 47, 4.
(a—nfBP+4
1, JaTadoF =’ 60. =5,
__]: 1+,/731
3T s

4 1
91
9 4
13’ 13°
2. 41
1
1g. §|450.
g .3 3k /47
1 2& ';“'_"
3t "E: 2*’\}!70
3 3
9 1 5%,/201
' 4
5,1
’2'
9
2 -3
5
6, —E.
2*,J3,_1*2'J_3.
2a
:!:..5__
+1
63u
O &
5oy 1T




@

LY

13.
14.
is.

16.

18.
20.

22,

26.

27.

28,

28.

30,

84,

BE.
36.

at.

39.

ANSWERS. 531

X. b. Paces 108, 107.

x=3, —g; y=4, 1;‘ 2. r=32, "i%’ y¥=1, —%.

H 88! + 22' * » * J L4 .
z=8, 2; y=2, 8 6. x=45, 5; y=37, 45.
£=9,4; y=4, 9. B, p==2, £3; y==1, £2,
g==2, £3; y= =3, =4, 10, =45, £3; y=+3, =4,

g==x2, £1; y==1, £3,

=+, 3, :I:\/ZE‘; y=0, ;‘:6,\/%.

z=5, 3, 4= /- 97; y=3, 5, 4./ - 97.
a=4, -2, £,/ 35+1; y=2, -4, =, /- 15-1
r=4, -2, @ J-11+1; y=2, -4, 2, /-11-1L

x—g. ;, =20, 5. 17. 5=2,1; =1, 9.
x=8, 4; y=10, 15 19, z='729, 343; y=343, 729.
=18, 1; y=1, 16. 21, =9 4; v=49
5 2
x=5; y= =4 23. z=1, 3’ y=2,§
z=91; y=1, 9. 25, 2=+26; y=%9,
z=6,2,4,3; y=1, 3, g, 2.
z= b, a4, *g, £2; y= a5, 24, £10, £8.
107 48
=4, Y= 1, TR
1+,/7143 1+3,/°748
= -, -»—---2—-—;y=-3,-—--—--—§—---.

15 9
z=0,938; v=0,3,9. 8t. z=0,1, 35 y=0, 2, %"
. 10 6 4 ek e

2=, g, 0; ¥=3, U R 33, x=2,34,2; y=2, 234, 6

NE Vi
o= g ¥y=2 34/ 5

m-::x:d, anf—18; y= =3, 5./ 18,

_ b,Ju. b Ja N anfb
520 X Ta-gv V= Tar ot T Tae
=0, Z_’,.{_l;ia 3 y=a, ¢ (1F,/3).

@ a{2h-a) 1 b(2a-})
BT b Y=g T

Tr=

(1]

34—



10.

iz,

13.

15.

186.

H oD e
VR AR WML R

20.
21

HIGHER ALGEBRA.

z=0, =‘=CL~;"7 +q,/18, 3, 2a; y=0, ‘Fb\f"?t *=b,/13, =h, =30,
a2 o

z=+1, '-4:—-—“-—-"— Y= &+ Do, F

,\/lba‘ -1 Jl&v‘-a‘*-t

X. ¢, Pagurs 109, 110

T=x5; y= £5; z=£4 2. z=5; y=-1; z=T.
z=5, -1; y=1, - 5; z=2. 4 z=8, -8;y=3;z2=3 -8
2 1 2 151 11
=4, 3, _9:_J_5_l1 y=3, 4, i‘/———-; 2=2, g
g==3; y=F2; z=x5 f. g=x5; y==1; z==1.
o wl 1. _1
£=8, -8; y=5, -5, £=8, ~8. 8. z= 3; y=4; 2"2 =z-
a=1; y=2; 2= 11. z=3, -7; y=8, —5; z=86, -8
z2=1, —2; y=1, -3; z=8, —13—1
a=4, §7—0, y= 5,'?7—6; z=2, -6, 14 s=a 0,0; y=0,4,0; 2=0,0, c.
RN oV SO I V. L1 (L D
NES & N [
Lo /80
NEE F
=15 - =
. HNQ 5 y=da, 11:1:;/ 15

5=2a, —4a, (lﬁing)a

X. d. Puier 115

z=29, 21, 13, 5; y=2, 5, 8,11,

£=1,8,579; y=24,19,14,9, 4

=20,8; y=1,8. 4. z=0,20, 31; ¥=27, 14, 1.
r=30,5; y=9, 32 6. =z=00,3; y=3, 44.
z=Tp-5,2; y=bp-4, 1 8, z=13p-2, 11; y=6p-1, 5.
p=21p-9, 12; y=8p-5,3. 10. &=17p, 17; y=13p, 13.
z=10p - 16, 3; y=23p-19, 4. 12. z=77p—Td, 3; y=30p-25, 5.
11 horses, 15 cows. 14, 101, 16, 36, 25 ox 16, 65,

To pay 3 guineas and receive 21 balf-crowas.

1147 an infinite number of the form 1147 +3Y x abp.

To pay 17 florins and receive 3 half-crownas.

37, 99; 77, 59; 117, 19.

28 rams, 1 pig, 11 oxen; or 13 rams, 14 pigs, 13 oxen.

3 sovereigns, 11 half-crowns, 13 shillings.
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12.
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33.

11.
15.

9.

25,
27.
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XI. a. Pagus 122—124.

12. 2. 224, 3. 40320, 6375600, 10626, 11628,
6720, 5. 15, §. 40820; 720, 7. 15, 360.

6. 9. 120, 10, 720. 11, 10628, 177L
1440, 13, 6375600, 14 300, 144, 16. 230300,
1140, 231, 7. 144, 18, 224, 894, 19, 848,

506, 21, 860000. 22, 2052000. 23, 369600,

45

21600, 25. |1__TI1_‘5_I§‘_0 26, 2520, 27, 5760,

8456, 28,  2803040. 30. 256920. 32, 41
L1958, - 32 7.

X1 b Pacma 131, 132

'

{I) 1663200, (2) 129729600. (%) 3326400. 2. 4084090,
151351200, 4. 360. K. 72, 6. 125,

nt. 8. 581441, 9. o 10. 30.

1260 3 455 o3 2bidetd
260. 12. 3374, 13. . 14, A

|2 je)* ey’
4095, 16. STT60000. 17. 1023, 18. 720; 3628800.
" lmﬂ 6
127. 20. 315, 21, W‘ 22, 4,325- 23, 42

1 plpz—l)_g_{q_ﬂjl+l; @ p(p—lg(p—m_q(q—lé(q—?).

-:0_(22__‘_13;_(? -2 _ g_(q:i'{]]_.[_g.___ﬂ.}. ¥, 26, (p+1)"- 1L

113; 2150, 28, 2454, 29, G666600. 80. 5199960,

XIIT, a, PacEs 142, 143

28— 15zd + 9023 — 2T02% 4 4062 — 243,

81zt -+ 21623y - 21627y + 9037 4 16y

89.05 - 804y -+ 80zYy? — 40z%y% + 102y — o,

1- 1842+ 185a — 5402+ 121 548 — 145810 1- 720479,
£+ 529 4 1027 + 1027 + BB 4 29,

1- Tay + 212" — 352%% 4 8524yt — 21a5y® + TalyS — a7y,
1§ ~ 4Bx® + 5t - 270 +y .

16
800 64 64
f_ B 4 _ S L .
T29:% — 972" 4- §40a* - 160a% + 3 a7 +729.
1+7_._.~_: 217*  36z% 35zt 21 Taf a7
gt TR Y el twe
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jo, 82832 200 o 135 243 729
toT29 27 7 3 4z?  8z* ' fdxt’
-1 a Ta® Tg®  B35a* . p 7L .8
1n. 35t 5T g +T+_8_+7“ +7ab+4o7 + o8,
10 45 120 210 252 210 120 45 10 1
B - m gt Tt st
13, - 35750210 14, - 1120409, 15 - 31222,
|3_0 PRt o 753 H30 ..
16. Eé,i, —E{a:c} (Sy) . 17. 404763 18. =N @bl
16500 70820 .
19 20, e 21, 2ot+ 24; +8.
22. 27 (1624 — 202%? + 5at). 23. 140,/2.
24. 2 (365 -363x + 6327 27). 25. 252, 26. - ‘i—fg-z“.
27. 110565a4, 28, Bdafhs, 29, 1384, -~1365.
18927 21 7
30. g T . " 32.. 18664,
o jon.
38, e 3¢, (~1)0 J—_,
PR ) N
XIT1, b, Pagrs 147, 148.
1. The 9%, 2. The 12%, 8. The 6tb, 4. The 10t and 11t
5. The$=6f. & ThedhandSh=r . % z=2y=8,n=5

10. 14842027+ 82" - 262 — 827 + 2025 - 827 + 25,
1. 2745 54as5+ 117a%24 - 1160328 + 1170%2? — Gdads + 270",

d 2n+1
R ¥ rs S e > ¥ T
14, 14, 15. 2r=n.

st

XIV. a. Pige 155

1 1 1 8 3 1
. SR ) iy’ Sl
1. 1+2z 8:.:—[-16::. 2. 1+2x+32 1633'
2 3 8
_——pm — 2y -
3 1 FT-5g % 125.1:3. 4. 1-92z%4 854~ 4ot
5. 1—x~z’—§z’_. 8. 1+x+2:2+1:;m".
3 g 2 10
- —gr_ — - P—:
7. 1 z+2z 2:::3‘ 8 1 IE+3I 57
xt g 5 , 4
9. 1+I+—G'—'5E. 10. 1—2a+§a —ga.



11.

13,

15.

18.

21.

23.

11,

3.
7.
20.

28.

32.

ANSWERS, 535
é(l—gz-i-%x’—gm’).. 12, 3(1-,'-; 1; 224 1:083:3)
4(1+a*éag+-lga3). u L (1+:c-f-g:sm gia:s)
- l—g‘;—g als, 19, %‘3 20. {r+1)a",
P M X o
(e 1Le8:5.2 .3:1.; L (Br-14)
— 184825, -

XTIV. b. Paces 161, 162,

b3S T @l el R eed)
7 ry
_ -1
(Cqpo LB Brod) (g 2e6 33‘r @r-1)
r, r
- 1},,{1-—!-1) (r+2) ., o 85T (el
2 I
L r+1
{— I)fa?'-l . X, B. Q:FR Z%,
9.1.4..(3r-3) ¥ G185, (1),
3_1'13'—'— Nt 0. (-1 Ir
2.6.8..(8-1) | (n+1) (2041 ... F—Ll.ntl) 2"
‘-—-‘—--‘--L-;—-‘-I iz, i?"_ [ a\“"H. .
The 8%, 14, The 5%, 15. Thel3%, 16, The 7,
The 4*» and 5tb, 18. The grd, 19. 980949, |
9-49333. 21, 10+00999, z2,  -99027, 23, -198432,
1-06133. 25, 007%5. 26. 500096, 7. l—g%-’c.
2 br 1 35 343
(]‘1-2*) 29, l—g. 30, z—-ax. 31. l—ma‘-

1 7 . 29 297 ,
3-—-5@::. 35, 1421322 36. 2+4 +3‘ix.
XIV, ¢ Pacms 167—1G9,

- 197, 2. 142, 3. (-1
.-
(- Ty (ut+ 20 +9). 6. Nm:( -é) 5.
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T

14,
18,

20,

21.

7.

8.

10,
1z,
18.
20.

23.

HIGHER ALGEBRA.

— -~ on
e e
? 5 e
Deduced from (1 - 23) - (1 - zj? =3z - 827, 16. {1) 45. (&) 6561,
(1) Equate coeficients of 27 in (L+a) (L+z} = {1+
-8
{2} FEquate absolute terms in (14 2)" (1 +§) =axt {1+,
Series on the left + { - 1)* q,2= coefficient of & in (1-2%)~%,
9
gem-1 _ } g .
R
[Use (eg+ eyt g+ 6 = 2 o0, + g0+ L) s=me @+ 0% + 02+ Lg%
XV. Paces 173, 174.
- 12600, 2. - 168 3. 3360, 4, —1260a%%4,
-8 6. 8033, 7. 30, 8. 1965,
10 10 3 1. -1 12. - E—
e T . : T8l
59 211 1
hhid — il It miat
5 is, 1. 15. 3 16. 1 T gt
1- 2224 dir® + St = 2028 18, 18 1—§x3+33‘+§~z5—§z?+§x3
: ‘ 2 32 8 B* )
XVI a. Paces 178, 179,
% 1 3
8 6 8 32, -1 3 g T3 4. -4, -—E.
i 1 2 1 3 7 i 2
573 T T AL U A
b 3
Gloga+9logd 9. gloga-i-ﬁlagb.
4 1 2 1
-gloga+slogb. 11. ~§loga—§103b.
- llog' a-logd, 13 zloge. 12, -—5loge. 16, log3.
12 2
_Joge 19, . Sloge
loga-logh 2loga+3logh
loga+logh _dlogm _ logm
__eaT I8t | 2. r=—— Y= .
2logc—logatlogh e loga ¥ logb
i 1 log (&~ 1)
logx=3(a+3b],logy=5{a-—2b}. Tog (a8}
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XVI b. Paces 185, 186

1. 04,1,287171,1.

2. -8821259, 2-8821250, 3-8821259, 5-8821259, §-8821259,

3. 5,2 4,1,

4. Second decimal place; units’ place; ffth decimal place,

5. L8061800, 6. 1-9242783, 7. T-1072100. 8. %-0969100,
9. 11583626, 10. -6690067.  11. -359727L. 12. -0563520.
13, 1-5052073. 18, -44002388. 16. 1-048445, 16. 191563-1.
17, 11998692, 18, 10035238, 19, 9-076226. 20. 178-141516.
21, 9. 28, 30l 24, 346, 25 429, 26 1-206. 2r. 14-208.
log3 | log 2

28. 4-562. I Tty T AT rrr R
_3log3-2Tg2 log 3 .
80 = oga-Tog %) ' ¥ "1 {log3-Togd)" 3t. 164601
log 2 _, . 21037_ :
3 gy =181 Ty =66l
XVII, Pagrs 195-—19%.
1. log,2. 2. log, 3-log, 2. 6. -0020000006666670.
9. £, 10. -8430980; 10413927; 1-1139434. In Art. 225 put
n=80in {2}); n=10in (1}; and n=1000 in (1} respectively.
r - 1jr-12r
12. (- 1yr3 .2—:1- ar, 13. {—1"++2: a,
9 ‘ P
4. 2 514—{3‘; -i-@i) +.. +(2—x)-~+ I
J; a L_
z? x“ x
15 1- L |4 L; (- 1) ,2‘_ 8. gy +log, (1 - 2).

24, -69814718; 1-09861229; I1-60948792; a=-log, (1—-—-) -105360516;

b= -log, (1 - —) -040821995; c¢=log, ( 1+ %) =-012422520.

100

XVIII a. Pacr 202
1. £1146. 14s 104, 2. £720, 3. 143 years.
4. L6768, Ts, 1034d. 5. 96 years. 8. £496, 19s. 434,
9. A lifile less than 7 years. 10. £319. 18:. 53d.

XVIIL b. Pace 207
1. @ percent. 2. £3187. 25 234d. 3. £110.
4. 3 per cent. 5. 284 years. 6. £12745. 7. £0526, 2

8. £06755.13s. 9. £183.18s,  10. 3] percent, 11. £616.9s Lid
13. £1308, 12z 41d. 15.  £4200.
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14.

10.

12.

16.
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10.

13.
14.
15.
17
18
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Ll

HIGHER ALGEERA.

XIX. a. Pages 213, 214,

a’ -+ 26% is the greater. 12, = or <224 x4+ 2, according 28 = > or <2.
The greatest value of x s 1. 15, 43 8.
4.5 when r=3. 23. 9, when x=1.

XIX. b, Paazs 218, 219

3.5° . LWE
e \/5‘\/5'

XX, Paar 228§

9 1
_7) ‘_"4‘< 2. g,ﬁ- 3.
15 ) ] 3
—-§,6. 5. 1;0. . 6. 0; -30. : =5

loga—logh. 9. 2. T30, mem™, 11

bOY =
1 g

0
2
g-

"/2_5' 16. Ja.

13. -1. 14.

=

17. g . 18. &%,

XXI, a. Pagus 241, 242

Convergent. 2. Convergent, 3. Convergent.
z=<1, or z=1, convergent; z=>1, divergent.

Same reault 2a Bx. 4. 6. Convergent. 7. Divergent,
z=<1, convergent; x>1, or =1, divergsnt.

Divergent except when p>2,

x<1, or z=1, convergent; z=>1, divergons,

If 2 <}, convergent; z>1, or z=1, divergent.

Hame result as Ex. 11. 18, Divergent, except when p=1.
z=l, 0or =1, convergent; x>1, divergent.

Convergent, 18. Divergent.

(1) Divergent. (2) Convergent.

(1) Divergent. (2) Convergent.

XXT. b. Pacu 252

z=1, or 2=1, convergent; =1, divergent.
Same reanlt os Ex. 1, 3. Same resalt a8 Ex. 1.

1 I 1 ..
<, or r=", convergent ; >, divergent.

< g, convergent; £=>r, or &= ¢, divergent,



10.

11.

13,

e & o e B

10.

ANSWERS, 539

x =1, sonvergent; x=1, or #=1, divergent. 7. Divergent,
i 1 1 ..
T, convergent; s> saorE=2, divergent.

z<l, convergent; x>1, divergent. If a=1and if v~«— # ia positive,
convergent ; if v — a — § is negative, or zero, divergent.

x<], convergent; z>1, or s=1, divergent. The results hold for all
values of g, positive or negative,

a negative, or zero, convergent; 2 positive, divergent.

XXIL 2. Pace 256,
%n[‘l-ne—l). 2, ;ﬂ{ﬂ-]—l)(ﬂ-{-ﬂ) (n+8).
l—lﬂn[ﬂ+l] {n+2) (3n+5). 4. n*{23nt-1).

51—091(7.'.+1}[2n+1)(3n2+3ﬂ—1). 8. p=g.

P=27a%, *=27ad% 8. ad=5f, 4a%— H9=8a%.
abe 4+ 2fgh — af? - bg? — ch¥=0,

KXIL. b. Pacs 260.

148z -+ 422+ T3 9. 1-Tr-22- 432,3
1 1 3 13 3 5 11
TP . Sl L a4
PR Gl SRS T . o3tzTryg + xs
1-az+a(a+1) 2% —{a?+2a%~ 1)z
a=l, b=2 T.oe=l, b=-1, =2
The next term is-+-00000000000003.

a‘l

[ Y e e DR Py

XXIII. Paars 265, 2686.
4 5 1 5 4 8

e "T72 ¥ §z-5 f@+s Sl BT R ey
2 8 4 11 8
itz 73 5 5@ i 5EE+5)
11 3
e SalPrer i s
17 11 17

PR EGET) AR o8
41z +3 _1_0 9 ___j?__.____l____

LT SRR o 24 %r-5 x-3

5 7 1 3

ESSCE R
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t v, 8 3 . 2
z-1 ol T Erip Erip Tl

4 1,
3i+78) " 30<4e)’ 3 L T-E

11 4 1 '(-1_}_':1) .
13. 3—(1_:;)——-—3(24_9:), E(ll-{--d : .
1 1] ()
U ltgenE Teen) C W s\Fm T Em )
1 1 4 .
—_ = L _EF_. — Tl — artey o,
18- 1 i+z 1-227 41 be
4 1, 8.
(112 B(l-x  (1-%)?*

1 u .,
. - —1 {1 11 1'.
Fyoprr Ry e L

2 3 6 " r 3‘1"‘+1 T
¥ Tt Trap 3rs U1 (3“+5'?)‘-

it.

12,

16. % {9r+ 84 (- 1) 2742} o,

1T,

r=1

3 1-3a ;T even, é {-1¥—3}a"; 7 odd, _% 1+ 47

Te-p a0+
2 3 2
—'"*{l_ﬁ}s'- (F"_l-z)ﬂ—l'f—_:c; {r?4+1}a.
ar+ prte e } ,
lemm oot e
5 2 1 2

Sr+9
Sy R Pl g Il g %’*3* w} &

18,

24,

21,

23 (1 —-——~1 {—1——-— —1-2
- z(1-z) (L+a" T4zf °
1 1 1 1
@ o ltras - TreE " Te Tra
1 1 { x o antl e }

iy vy g S R | Sl iyl e 2 Sl e

XXIV, Pagr 272

1+3z . 24
1. [i"-_—x-'—)g, (47'+1]5f. 2. l-f-x-?,;l:""
2-3m o 7-20
T gzi e’ 19  TTa T

3120+ 11 N
T riis 68 3T+ +1ha". 6. 3l dnR; §{3"~1}~1—2“~1.
2(1-8% 3 (L-2mn)

- r=1_ 3 OGn=1y,m-1. —
I R 5
1—4m™ 1 - 3Mn
-1 a—lyar—I1. __— 7 [ —
I L I i

L4 {-1yor}an

27 3
%1— {— 1}r+ Z} o,
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1-zn 1-3%" 1-2%gn

-1 gn-1y gn—1, _ .

9. (1+3* an—ly gn—1, 1—:c:+ T 32 T 9z
8 gem-s 4 1 o

10. 2 (=14 —— -t -1 5507 - 1.
1wy~ Buy g+ 80, a v, g=05 g, —du, o+ Bu, g~ du, b, =0
12.  8,=8, -2, where Z=sum to infinity beginnirg with (n+1)™ term.
This may easily be shewn to agres with the result in Art. 325, .

13. (2n+12+ ; (21 4.1),

XXV. a. Pacus 2747, 278,

13 15 28 328 674
87 7' i3 130’ 813
2 7 9 43 95 613
5 17’ 22" 105" 2327 1497
10 13 36 8 121 1174
3 4 11° ug* 97 359 °
g 1401 1 11 11 17
’ 94 2+ 2+ I+ T+ 2+ 2° 12
1 11 157
+ 3" 30°

L - - S

1
7 1 1 1 11, 25
. o SR o ol wnk L - L
1 11 63

10, o g wm e e e

1011 259 1 7 8 38 47
B 45755 ® B3 oag 3 W0 W
R TS

(rn+1}+ (R-1}4+ n+l
n-1 nt ot -ntnm-1
E RIS L

18 n-— ; and the firgt three convergents are

XXV. b Paczs 281283

1 a i 151
{203y *°% 2(1250)2" ViR
11 1 1 . a'+3a+3
iT i E 49 a+3 Frlairdats’
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XXVI. PaczEs 290, 201.

1. z=T11:+ 100, ¥=T75{+109; =100, y=109.

2. x=351%t-78, y=450t~64; x=446, y=39L.

3. a=393t+2320, y=436:+355; =320, y=2355.

5 4

4. Four E. Beven. & &> 5

g 5 8 11 7 1 1 5 7

12’ 8' 12" 8° 8T 12 &7 18’

8. £6 13 9. w=Y, y=8, z=8  10. z=§, y=86, z=T
13. .’5=4, y:ﬁ, 2=1. 1z z:ﬁ, y=9, 2=,
23 z=3 926 1;y=11,4, 8,1, 5; 2=1,1, 2,2, 3
14, z=1, 3, 2; y=§,1, 3; 2=8, 4, 3.

15. 280¢4-93. 16. 181, 412.

17. Dengry 248, Seplenary 503, Nonary 305.

18. «=11,10,9, 9,6, 4, 3; b=66, 30, 18, 12, 6, 8, 2.

19. The 107 and 104" divisions, reckoning from either end.

20. 50, 41, 35 times, excloding the first fime.

21, 425, 22, 899, 28. 1829 and 1363,

XXVIL a. Pacrs 294, 295.

1 1 26 H 2589
1 1+1_-{:§:‘ '1—5- 2. 21—;:,1—2-@5.
101 485 1 1. 99
M iim S T PEas
B, 34— .t 3970 6 i b L L 1 119
3+ B4+ 77 1187 1+ 14+ 14+ 14 6477 38°
1 1 1 1 116
LEAS el e SR T
goagl L1111 1w
14 24 44 24 14 84 777 427
1 1 . 1851 1 1 1 1 158
S ey W0 S s vl i T
i1 1 11 1 151
W b BT By 54 T4 134 4
1 1 1 1 1 1 1 1 283
B ey TrBF IFIF 14 3e %
13 1_ i l ._l_ _1_.. -1_ i 12
T 44 14+ 14 24 I4 14 B+ 777 55
w L1 L1147 w 14 L 1 s

16+ 2+ 2880

1s.
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1 1 o 1

17- T and - . e TR . -
{65)F ** 37528 18 5 2 gy
£030 1677 11 1
18, oo, . i S
407 0 33 S T Yl Sl
1 11 1 1 1 1
22 44 .21 Lt
Iy ir iy ais B tarsT T
101 1101 1 1
2 A oy oo 1L
+3+ 8+ 771+ 24 34+ 34+ 5+ 2. W10
26. Positive root of 224+ 3x~-3=0. 27. Positive root of 32° - 10x—4=0,
2. 42 0. ;.

XXVII. b. Pages 301, 302.

L ogal 11 Sat+8e4d
) 2a+ 2a+ 2a+ "' SeP+4a

1 13 1 1 82— 8a+1
2. a-1+ —_— )

2+ 2(a-1)+ 2+ Z{a-1)+ Ba-4

1 1 1 i 2?1
% e S ir f@-e " 8
4 14, 1 1 1 8a%+8a+l

2a+ 24 2a+ 2477 Sat+da
5 apl L 1 1 2¢0sdabsl
b4 2a+ b+ 2o+ 7" 2abt42d

1 1 1 13 2an—1
S iy e Yl wral e A e masl
7. 4822°+1800% +15q
’ Lidat +36a4+1

XXVIII Paae 311
1. z=Torl, y=4; =7 or b, y=6. 3. =2 y=L
3. z=38,y=1,11; z=T7, y=9, 1¥; 2=10, y=18, 22,
4 z=2,8 68 11; y=12,7,4,8. 5 £=82; y=1, 4
6. x=T9, 27, 17,13, 11, %; y=137, 51, 29, 19, 13, 3.
7. £=156,y=4. 8. =170, y=384
9. z=32, y=5. 10, =104, =21 1. z=4, y=1L
12, Zr= (24300 + (2 - V3% 28 . y={244/31" ~ (3-./3)"; n being any
integer.

13. 2a=(2+ /B (2— /5 2.8 .y=(24+,/5)" - (2-./B)*; n being any
even positive integor.
14 22=(4+ 170+ (- JIT*; 217, y={4+ 1T/~ (4 - J17)%; n being
any odd positive Integer,
The form of the answers fo 15—17, 19, 20 will vary according to the
mode of factorising the two sides of the equation.
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15.
17,
19.
21.

10.

12,

14,

16,

17,

18.

12.

z=m?-3n2, y=m?—2mn. 16. x=- mi+dma 4t y=m?-nl
@=2mn, y=5m? -t 18. 53, §2; 19, 16; 18, 8; 11,4,
mE - n?; 2mn; md4nd 20. mP-nt; 2mn 4 nl

Hendriek, Anna; Claas, Catriin; Corneliug, Geertruij.

XX¥XTIX. a. Pages 321, 322.

-l-n(n+1){—n+2}(n+3). % I—"An(ﬂ-{-1)(rt-{-2}(1@-{-3)»{’1'&-!-‘;{-}.
3

12(3ﬂ 2)(3n+1}(3n+4}(3n+7)+12 4(27n3+90u + 45n — 507,
. Z(ﬂ+1}(n+6}{n+7]. 5. Z(n+1)[n+8}(n+9).

Ed Q1 z_ 1

s L T ogmsil 3

1 1 SRR S S
127 i@e+1) @n+8)’ 127 © T EER ) (B d)’ 247
5. 45 5 U SN T §
{ 2p+lyn+2)’ 4 © 6 w43 {n+3](n+4)

3 2 1 3 n
S treay - 1—0{n+l)(n+2](n+5}(2n+3).
;—n*(n’—l]. 18, 1 (3-1) (2 4+1) (2 +2) 20 +1).

1135- (n+1) (r+2) (3n° + 3602+ 151n + 240) ~ 32,

(r-Lin(n+l) (n+2) nin+l) 4  n

6(2n+1) ) 18- 3 n+tl’
n(ﬂ;s}—kg-;‘—%-(m‘ 20. n+1—a-_-1.
XXIX. b. Pacws 332, 333
Antin; 0 (n+ 1)2 2. B+ 3n; %n(ﬂ-&l) {5+ 7).

n?{n+1); ﬂ(ﬂ+1](n+2) {3n--1).
—4n—(n—3}, -n{n+1){m’~3n-2).
n{n+1) (4-2) {n+d); élﬁ n (-t 1) (n4 2} (n+ 8} {4n 4 22).

1422 1-z+62°-22° 2-z4-2t

T-a N = & Tz
l-z 141le+ 1123427 9

{1—-_-!_—-5]_,; 10, —-——-{—l-:-Ejﬁ—--—* . 11. i

25 n(n+5}

13. 3.2%pn42; 6814 ———".

5’ 2
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16.

17,

18,

20.

22.

28.

28.

30.

32,

11.

14,

15,

19,

20.

22.

ANSWERS, 5458

-+ 1)% ll;-i (Bnd 2 — 16 - 26). 15, 3 lpm; i n?—‘i‘—} .
antl 2 g 2“‘-‘3—-4—;:1?. {+1) 2n+T).
3“_1+1'?l(.n+3};1(3:1+1_3)+MM_

2 2 [
Loz net 19, I et w{wtd) s
{1-zf 1-=z’ Tl-zP (1-zpE 2~z T
11 g Mol 2

n+l 2% Coare F Yy

% {1+ 1) {Bnt 4 270 +08u+"} 2 (n-+ 1) (120° + 830° + 3Tn + 8)
23, ; .
15 60
n{n+1}(9n’+137&—’—8} 25 1 1 1
i) © 3T 18,59 Bty
antl n
Hml 27, {ﬂ2—11+4)2 ~4,
; 1 1.8, L fEn+1)

— 15+ 4 3, L DA gee e BT
- 1) 8+t 3 B 5T lT6 . GarR)

n 1 1 1
I an [ A
s R G TS | e
1 nel o 1o té 1
27 3 ' {n+1){n+2) " 2002

XXIX, ¢, IPaues 338—340

1, . l-z
3 {¢F—e"% —z, 2. 1+ - log (L—.ux).
1 . . 1
=% o g% = gtE 4 Ty, } .
4{? ¢ ie® 4 ig—T} 4 (-r-2)|r—l
’
(1) e®. 6. 2" 7L
£

n{2n-1). 3. 0 10, 4.
log, 2 -—-;. 12, J{e-1). 13, e-log{l+a).

Wb wt ol g W Tuk '?.u" n?
O wryrs-Frie O gratmoatn
15e. : 17, {1) n+l

1 1 o 24(-1"
W 3 (1- ) @ -
(1+z)® Ba+2 W

- log (14@) =" R 21, m{wwl) e

1 = Tyt 1
(1) 3 ‘{1 *‘2'=‘+(1~i- () l)nl—]} () 3 {4.1.{_ 1)n-t

..n-r 3
e+t "

H. LA 35
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XXX, a. Pacrs 348, 344,

1. 3,6 15, 42. z. 1617, IS0, 1859. 6. 48,
7. 93, 33. 8987

XXX h. Paces 356358

20. z=134¢+ 61, where ¢ Is an juteger.

XXXI. a. Tages 367360

I 11 .
2. 1 +: iTa 18. 1; it can bs shewn that g, =1+p,.
XXXII & FPacnes 376, 377,
15 8 1 3
L Mg &g o Ry L
4
5. 2to3. 6. §7T_725 N B. 43 to 34. 9. 3630 :25.
2197 " 1 2
10. 50855 * 11. 952 to 715, 4. i 1K, 7
i1 n{n-1)
TR s ¥ et |
XXXTL b, Dauws 383, 384
5 16 52 16 8
1, gﬁ-- 2. '5':;)':'25. 3. -77. 4. ;BJ.' 5. 15.
T2 2197 2816 4651 200
= LN, gy 29N iy il
S g T M gmest P b mmes % Ein
1 gL 10 043 1
10. 7 11. §Ié 13, f{] 1%. ~256. 15. 95"
15 12 0 22 13 "
1€, 47 g,?, E’_fl 17. W5 &pC 1B, #» -0 to 2.
45927
5 Sadst
19. i3 to 5, 20. 50000°
XXX e Pais 384, 300
2133 5 4 - 1
1. 126" 2. 15 3. o 4. Florins, 5. 3
Y 4 7 - 1
6 17230 7. . 8 o Iltos 0. .
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14.

10,

15,

14,

20,

8.

32.

10.
20.
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4 £5; B £11, 12. %g 13. 4 ghillings,
250 276 B 1
{1 776 (23 e 15, 4d. 16. I 7. III+§m.
XXXII. d, Paces 399, 400.
? 1 12 2 4
z. 2 . LR . P I
g 35 T By O3
2 32 377 1
— — 25, . .o
amel’ oI T g0 8 2. 34 > 3
1 40 11 3.1
3 g 12 . 13 £1 16 (g 2) 5.
-1 n-1 13
£8. s R S TS
XXXTI e, Pacrs 405408,
1 12383 B7a
Tto b, 196" 3. T5560 5. Z0L-
5\ /5 . 16 ] 1
(ﬁ) ( ) ( ) o5 8. §; each equal to 5
13 343 - 169 155
23 10. i'—sgs. 11, 1lte s, 13. .d, 52:1 ; B, gﬁ.
1 1 25 149 33 1
68 126 % 316 oo Y 10060 800
Ona guinea. 22, %}% 23. w shillings. 26, 15to 1.
1 1 1265 5087 w—=Db\3
e 3 3 ©orogs’ Fpugds (“ar) .
=07
If b=, the chanco is 1-3 ( ) ;
g a
If b<y, the chanco is (‘;b _--‘-‘) .
2 [
XXXITE, a, Pauws 419, 420, 421
7. 2. 0. 3. L 4. abo+Bfgh—aft—by® - R
1424yt +2t 8. . 7. 0, 8. dale. 9. 0,
3. 11. 3abe - a?=1- 0, 13 (1) w=a,orb; (2 =4
Bt ah ac i . 22, AI(M ot B4 eN
be  *4+at le
' ca el Wl |

35—2
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26, The determinantisequal to]a® a« I1!wil -2% af [ .
v I L -2y o%
2 1; 1 -2z %
2T, u w v =0 28. | g ow ¢+ n w v oa
w v o rawt v ' v w by
¥ w, T ou w l L' o w el
la & [ 0!
XXXIIT. b. Pacus 427, 424
s P oo 0; add first and sccond rows, third and fourth rowa,
fa+8) (e —1)% 4. a?+ 124 e - 2 - 2ca - 2ad.

4. 0; from the first colamn subiract three times the third, frown the second
subtract twice the third, and from the fourth subtract four times
the third,

1 1 1 1
B. abcd(l-i—a + E‘+ : + (}) .
Te —lety+a) {yre- o) eha oyl @ty -ah

et a e et

bR () T s plRoU-o (k-a)

13.
Safa-t)la-c)’ @ la—ota=a)’ ¥
XXXIV. a. Pauwrs 439, 440,
1. -103 2, But+b=27
8 -2 r+1l; - 1541l 4. g=3.
S grtbSemd 4 18070 Dda Ty IdTed - 3502 -5+ Q0501 4825,
6 (b—c){c~a}{u-1b} {a+b+c}.
7. —B-gc~a)fa—b) (b+6) {c+a) {u+l),
8. 24alc. g (bde){ey-a) (a+b).
10. {d-ejle—a) {«~2) {@®+ '+ +hc+ cub wd)s
11 Jabe b +e) {e+a) (u+ b 12, 12abe (m+d +¢).
8. Blabe (a®+D7+¢2.
W Fl-c)(e—ajf{u-b) g—a) (e-b)(z-c).
>
#-a)(z-1){z~c) 2
a0, (2= 2) 5. 1. 82, adbtedd

la+zyl¥z) Jle+z)”

XXXIV. b Pacrs 442, 443,

6 0 7. A=ax+lytay, B=bw-ay.
28, {u*+be) (U7 + ca) (o +abd).
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11,

13.

15.
17
20.

23.

28.

L

12.

15.

18.
20.

=
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XXXIV. e. Pacrs 449, 440,

OB byt = 2, wtua=10, 3. 2+ =l
= (&~ Ja). b af-ub=1, 6. @ pyt=2gl
et o otert 4 gl = 250033, 8. ¥ —dew=k{r+a)
= doe? 304 =0. 16, ab — 27 - b4+ 204 =00,
ﬁ'& + T—%?J' + l_lj";: + l-f_a: 1, 12, Bafli=dh
wb=14¢. 14, af+ ¥+t ale=0.
(o + 8% - (- 5)A= 463, 16. o+ 12+ctx2abe=1.
ehe={d-a-b-e)% 18, - dabe 4 aed 1455 B2 =0,
Bletb-17-cle+tb-1)(a?-2ab+ b1 -a-L+ab=0.
1 1 1
{a=byer+{a-cybg + {h—ctap+{b-a)er * fo—a)bg+(e—byup
i
= begr+earp+ abpy
ab’~ a'd ac’ —da'c ad’ —a'd l =0.
ad' ~a'e ad)—o'd4be’=We Bd —bd I
ad’ = a'd L =-b'd cd’ —c'd

XXXV. a. PaGEs 456, 457,

64 =132 ~ 1227 + 302 — 18=01 2. #4225~ 114 - 1273+ 862 =0.

af — 52% - 8at 4 40x° + 1627 - B0z =0,

o - 2 (a4 07 2+ (a? - U 5. 1,851
2 3 11 2
5 —g T -6 8. 6%

8 3 31 3 1
-5 -2, 4. 10. ~g Ty 11. *,JS,E,—E.
g8 21 11 3 4 3 o
§ "8 3 18 45§ 4 g, g L2

. 8 4 4 B b
—‘i, -‘1 2 Hhe 1s. u, g, 2, 3 1T, 3' _?;l j-
- -2 :
M & 21”, @ L35 1. (1) -0g; 2) L.
=24, —-31‘. 21, 2¢%
XXXV. b, Pasua 460, 461,
L 2 lsJ-38 3 1.,
3, _E' 2___ | 2. —Q' g,..:k,\f-"!.
14,42, ~1e/T1 R s N RV S
w1, wagd, 122,/ -1 6. at-25i425=0
2 — 82436 =0, 8, 2+ li=0,
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8 24— 10+ 1=0. 10. & —102% - 1927 + 480z - 1392 =0.
1. ot Ga’+ 1822 2654+ 21=00 12, 25— 1625+ 8Bat + 192274 144 =0,
13. One positive, one negative, two imaginary. [Compsare Ark. 854.)

15. Ome positive, one negative, at lesst four imaginary, [Compare Art. 554.7

16. Bix, 17. (1) pg=»; (2) pPr=4g* 20, g*-Zpr.
2. pg—r. 2. %—3. 23. pg-3r
24. pr-da 2. pt—dplq +2g°+ dpr —4s.

XXXV. c. Pacms 470, 471.

1. 2—Bz¥+ 152712z 4 1. 2. x4—372%- 1282 -110.
3. 2zt 4+ 88— - 8r— 20, 4. x'-24x7-1.
6. Lhaxle (o0 4+ Ttk To2hd 4+ 2% 4 200 (Bt + 102222 4 14) 5 2k,
10. 2.2 -1, -3 1. 04,1,1, 8 12. 3,3, 8 9 2
1+,/73 1+,/°3 111
13. -2, Bt S 14, 3153 —-2
5. 01,1,1 -1, -1, 2 16, ®./3, £3, Lan /-
<
17. a, 1, - &, b )\/3 ! J 7 ES Z,}—%J 23
3 5 _a —n
1. 0,1, ~50 ~%} 0,1, -5 ——__;. 20, wEt—i=dpn (n - 2N
22, (1) -2; {2} -1. 27. 5. 28, 99, 795,
XXXV. d. Pacrs 478, 479.
1 yi-2dp2+ 0y - 24=0. 2. -5yt 3yt -0y 1 27=0.
8 1,1, -2, -%. 4. 3u2,/2, 245
1£/73 348 111 —
R e 6 2255 §(uw(_aj_
4 con 1 i1
7. 42 3. 8 6, 3,2 0. 5,5 —g, -z
. -2y +1=0, 12, wé-4y%+1-0, 13 ¥ -Tyt e 1252 Ty =,
18, 36— 60y — 820y% ~ T1Ty" - T78y — 42=0.
Uyl H 4
15. ytig--p%"'—%-fﬂ. 16, 3%+ Ly + 4290 + 5Ty — 13y — 60 =0,
17. y*-8y*+ 19y -16=0. 18, yt+8y84+ 497+ 8y 4L 1=0,
19 483+ 12y +8=0, 20, wyt+ kgl B=0.
21, - gt - 2ty —r1=0. 22, vy - gyt - 1=0.
28, g 1-n)* +{1-11=0 24 g~ 2%+ g%y +17=0,

25. P43y + {3y =0
26. 19+ B (Bt ¥ ey ST (PP 200 =0 28 =1, 2,5



10.
13.

16.

17.
22.
25,

28,

14.
16,

16.

17.

19,

22.

ANSWERS. 551

XXXV. e. Paurs 488, 489,

5/ —_ _—
5, ié*/—?’ 2. 10, -5+7 -8 3 4, -2+5/73
- 6,324 /73 5. _%'2%},{'_-_3_ 6. 11,11, 7.

1 1x./<3
Ui e R S SR —-(?#J 31
4,-9, ~1x/-1. 1. &1, - da /6, 12, 1,2, -2, -3,
1a,/2, - 14, /70, 14. 1, -3, 2&,/5

1 1 3£,/
I A
% %5, 5 6 1, 4515 -
3235
IV 5. @esrmo;d, TS
—23,/0, + /2, 25,02 28 Myt gs(l -y itr(l -y + (18 =0.
zﬁyfa_ 2. ”fc_;’}?t_

- B2t 21t - 20n + 5= (t——5$+o} {22-3z+1); on puttmg n=4-y,
tha expreseions x?-5x+5 and z° -8z +1 become 4% —3y4-1 and
~ 5y + b respectively, so that we metely reproduce the orlgmal equation.

MISCELLANEOUS EXAMPLES. Paars 480524,

G, 8. 3. Right.
(1) La./5; 122./5.
(2} :z:=1,y=3, = —5; (43 .‘r=--1, y:—a;z:s.

. : 1
{1y 1, - 2y {2} 8,1. 7. First term 1; eosmmon difference ;

3"
P —qi —p{(p*~3q): (PP -} (p?- B}
é{uh-{—a“b“}. 10. ]'i:_;w 13. A, 7 minntes; B, 8 minutes.
ai=F =k
g n.__,__‘£ . £ ¥ _
=y Tasbde’ er c—g @~
whera B (a¥+ 12+ % - bo ~re ~ab)=
One mile per honr.
vy S -
(1) (b+c)(eta}{ath)l (3 \/’ i \/ 18 g) 2268
21+ /105
(1) Y

S B ..
{2} == J—:E'J”h' 2(51-!'1 T30 ’\/li"'—l—(:h—a'—"
HEe2234 L baf (2300 L+l

o] k=t

letd; nine. 23.
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24, Wages 15s.; loaf 6d. 25. 6,10, 14, 18,
ola—b) ab{gid} :Fd{ﬁ-—!—-b) 28, 88} miles.
2. () Lomrys O gt i

29. =38k, y=4k, 2=5k; where =1, so that k=1, w, or w?. 30. 480,
a1, Either 38 half-crowns, 19 shillings, 8 fourpenny pleces;
or 37 half-crowns, G shillings, 17 fourpenny pieces.

3z2. a=0, b=T. ) 33, 40 minutes,
1 1 13
St 2
36. 1+.7:+2.1: 57 8.’;‘
an. _12‘/‘_3, or 1—*;@1 [#¢-2-5{x?+x+1)=0.]
38. a=8; e-4 0. ‘The first term,
=0
1+ 4b%c? -+ Gcta®+ o®?
4. 13,9 a4 b4 o¥
43, (1) 8, -2, ;}i;f_‘ﬁ?‘ [Add 22+ 4 to each side.]
@ &=1, -1, -1, 0 0;
1
7=1, -3, 0, -1, 0
2=1, -%, 0, 0 -1. #7. 5780,

48, 150 persons changed their mind; at firet the minority was 230, the
majority 350, 50. 930 men.
2m..] . ad—be
i 9 i
L (1) 0 e (@) syt
[Put (a~c}b—d)={{z—e}— (z—a)} {{x - d) = [x=1)}}; then square.]
161 3 Ja %a, /b
. 6 == it i = .
8- % -3 Sy Py S N
88. (1) 1. (2) =4,/ [putting 22— 16=y", we find 3¢ 16— 4y (42 - 4)=0.]
- - ] 2
60, 2-op males; {b-a)p et

T—e S females. 63, 0, a+b, P

64. Common difference of the A. P, is %-——{'1; common difference of the AP.

which is the resiprocal of the E.P. is —2—0. | [The ™ term is
ab{n-1)
afn-n+br-1) " . ab (n-1)
B the (n - r + 1) term ia a0 J
63. 19 69. £78.

70. 0, 1EN '\2’_3 —1:./-3

[la+dF-a—12=Bah{a + D), and {a- b -+ V= —Jub(a - B}.]



72.
73.

79.

80.

85.
86,

a5,

100,

1907,
109.

111.

117.

191

124,

138,

127.

1z8.
130,

133.

137.

138.

ANSWERS, 558

log8 L2(1-2Tog2)
=%, ==X o ol .
1) = Yog6 &-614. {2) &= R =1-134,
T, 2. 74. 8 hours.
* ¥ 2 a+b4e
{1) a-——'é:::ﬁ or -~ abe " {2) r=y=z=1.

a=3 =1 81, [Pubtr-—g=wandy-i=v] 82 2=3 & I26.
Bums invested were £7700 and £3500: the fertune of cach was £1400.

503 in scale seven. 91. 25 miles from London.
1826,/-T g 25£10./-1
=N — A -t
FES LTy YR g Ty \/3
. o ltds __2{1-2n7) l-(-l}"z"
Generating function is Togogpes SIS gty
it ferm = {2 4 { — 1)} %2,
at b —et—d, 108. 12 persope, £14. 18s.

(1) z=a, y=b, z=¢. (2} z=35, or 1; y=1, or 3
1+ 1—-+— 12—+' JTI l_-‘: 1-'_{: ‘g; =048, ‘_l,f=492. 1138 £12, 15,
1) zx=g, y=b; o=a, y=2%; =2, y=0b.
{2) z=30r 1, y=9, z=1 or 8,
—1+,/28
= ——-—-—2'\; 4 y=—3; E=
1
af{zv~1) b
(2 z-1 +tx 1@
1 o TS U EA
g. 122. (1} 3 or ) .
(2} z2=0, y=0, t=0; s=£2, y==x1, z= &8,
18x-23  We-1  s+4
3{zt-8x-1} 3(z*+x+1)° 27717
P=1; acale of relationis 1 - @ ~ 2.7 ; genersl termis {34 (- 1R} a1,

-1%,/29
5

{2 h et - (s 122 (B2 4+ 2 - 1) 2 — n®).

1 1
(1) z=-46, 2; y=9, -8, (2} T==3 ¥=3

. .
ms. @ 2—“{"} 120. 12, 16; or 48, 4.

(1) 2= =7,

¥ E—y—i-—-k k 12 om Q12T Bah? . opd DA ot
(J]a_b_c_ Fuie » Where k2=202:% + 2c%° + 2a%° ~ o et
n,»-1 134, 384 5q. yd=. 136. a=m=2, b=3, c=22

7 9 1 13
(W) e=m, y= e B~ *\/iﬁ'
£3. 2+ at the firat eale and £2. 12s. at the sacond eale.
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139,

141,

142,

143.

145.
146.

147.

150.

151

1563.

156,

1567.

162,

163,

164.

AIGHER ALGEBRA.

1) %n (r+1)(2e+1). (2) %n {rn+1} (2 +2) (8n2--6n 4 1).
&3] %n(n—}-l)(én.- 1.

1 -
(1) z=1or ;; y=3 or 17;
(2} =y, z may have the permutations of the values 3, 5, 7.
Pyt - gy -t -8 =0.

zlrt-1) = 3+ 1e - 15727
W oayw st P et e

(8) orl 4 % nn+T) -2 128, 2(0%-d)=3{F -9 {b-a).
RS}

A walke in successive daya 1, 3,5, 7, 9, | 11,13, 15, 17, 19, 21, 23, | miles,
Awalks 12, 13, |14, 15, 16, 17, 18,19, 20,;

so that B overtakes 4 in 2 days and passes him on the third day; 4
subsequently gains on B and overtakes him on B's 9" day.

‘*_/%:_4._ 148, —[a+d+¢), - {a+wbtwle) — (el o®h+w).
At __ b!’l
™ ferm is ﬁi%—_—b—-l 1 Sume=d - B,

afl -naz")  afr(l-a™lzt
1-az (1~ ar?
sponding funetion of B.

where 4= , and B denotes & corre-

gy~ 2%° - Spgy — 2%~ *=0.

+3./°3

O -7, 7__;/”--. @) =1, 3, 4. 164 4 days.

1 1 5+,/-80
M 3 -5 g_F%/__*____ o [(122-1) (125 - 2) (127 ~ 3) (12 — 4} =120.]

92 1 1 2
CREN NP ST
22 years nearly. 161. ¢4 houors.
7, /81

L F=yl= ‘___7_4"‘/317 s x==%l, 23 y=x4, Fliz=-y=%=.3

(2) z=k(% +et —a?- a%c?), &o., whers 2k {al +154+6% - Beib Yy =1
[It is easy to shew that ez + Dy +e%2=0, and

aty + bz e =gty 4 2 - Bryz=a® £ et ofy]
e + b+ ) r=(be+ca+ab)=x o (be+ea+ab) - dabe (@ +b+¢)-
[Equation redueces to (e+b+¢) 2* - (be+ea-tab) a4 ode=0.]

{1 %'n{?;+1){rt+2}{3n+13}. {2) 2a~ 5.



166.

167.
170.

172,

174,
177,

178,

182.

186

187.

191.

1982,

202,

208,
209.

210.

212.

213,

ANSWERS.

L] 4
o
o

51
i x= 2 _in"‘{%a, J—l-g-, [Eliminate «.]

(2} z,%, % are the permutations of the guantities 2 _l___,,zl___B 1 "';—-—

(z+y+2)°=38%" 188, 2. 168. 2*+1°+ 2" - Bxye,

He walks 33 miles, drives T} miles, rides 10 miles per hour
AB=374, BC=30, Cd =15 miles.

{1) =13 or 10, y=10 or 13.
_dle-8 _e{a-B) bid-¢) a(d-c)
@ == d-—c YT Tdg VFT e} a-b
£3200. 176 Byt (Br - Ry 4ri=0.

p:(a-c*bdg (eg % Fi) + (be = ad) (faweh);
q = (be ¥ ud} (eg £ Fii} - {ac £ bd) (fy T eh).

184,/ 747 -14x /T 74

=6, - b; —_— —g—

yot, -6 BN HT 14 TTE

[Put x—y =1 and a2y =v, then u?+ 20 =061, u{il+v)=91.]

8987. 188, P -byS-acy~c?=0, -1, -9, "%, 3-*;/5_
(1) ,y,2 are the permutations of the quantities 1, 1+‘2/ =3 \ J—'—:‘:{j .

@ == *9-%;19} &e.

Connervatives; Bnglish 286, Scotch 18, Irish 35, Welsh 11,
Liberale; English 178, Jeotch 41, Trish 68, Welsh 19,

(1) 7,9, =3 (2 2=/-3, -MJ?”L

[N -l lmtn—-2

2&,‘:&--':-51-1-—3—“ s Sh,=a4l -~ d‘ . 201. P;:—_—ln—"ﬁ
_ vt L4 [ - Iy

54, - 926, 144840 /=T, 204 +4(-1)

nyl® TSI
Baon? 4 simg — 3af

rmd - nmg ¥
7 Poles, 14 Turks, 15 Greeks, 24 Germana, 20 Ifalians,

207. 81 years nearly.

1 x l4x
573 gp l(ta)
1 410 g+ dodad
1 i (51} (n42) {(n+38); {2) v (8} 23.
_1_1 215, x=ma% [(s~+§) [a ) , &e. 217, 420,
97 it a
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2338,

225.

230.

231,

233.
234.

238,

247-

249.

350.

a53.

HIGHER ALGEBRA,

(1) m:y:%{i15éJf§}, z=§(:l=15=1=2 =T

or z=4, 6, -4, —6;

y=6, 4, -6, —4;

z=5, 5, -5 -5

z-a _ y-b _ z-c _
(Q)a(b—c)_b{cha)"c{a,—b) N

where {D—c) [e—a} (2 - B)A=a?+- 1" +¢¥—be — ca - ab.

3
12calves, 15pige, 20 sheep. 220. Lim ]Ju (—E’L -1 )} =_; convergent.
T, 2

Scale of relation is 1 - 12z + 322?; ™ term= 3 {471 ¢+ gn-1],
I
S T e |
i]:
243"
ad+ b3 +et=a (b+e)+ 8 (o4 a} + ¢ (a+ 1)
(1) (1-2PS=1+4z+a - (n+1%%+ (38 + 617 - 4)z7H
= (3a% 4 3n% — Sn+ Ljant2p niphtd,

232, 2a—== JEQ_D=+32£ JE+DE =, e

1
FEI R
L+ ozt afzd 4 af2?? + a2 4 a2 4 alig® ot a8 4 o7 4 @20,

1
(g~

3hours 51 min. 240. 201 ~ % . 263, —140.

3, 4, 5 6. 246, a® (c% ~ 3% 2= (al?+ 249} (ab? - dF2.
6
2, 6 1, 3. TUR

) 2ﬂ+l-2~%n 1) 20+ 1),

on+l a2
(2 frrl) 2+3) 3
1—gntl  2(1-2%gM . 1—gmtl (1~ gntlgntl)
{3) T2 S when = ig evon; Nz + T
when » i8 odd.

{1) z=y=2=0 or g. If however #*+y?+e2+yzs+ar+zy=0, then
z+y+z= - qa, and the solution is indeterminate.

g z = ¥ =. & .

@ a(—at+bie)” bla~bae) clatb-e)

i
TR JCakbr) (as b atb-c)
— {4z By+ Gz} (- Ar+ By + &) {Az - By + Cz) {40 + Lty - z) where
A= JEb -l e
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288. (1) x:==1, @, o';

y=1, o w:

2=~ {a+), -(awtdu?, - (aw?+bu).

(2) z=3, or 7 z=0, or -4

y=T 0r3} wu=4 or -61"
2567, To st least 3r - 2 places. 288, Tea, 2. Gd.; Coffve, 13, 84,
262. 2¢° - §pr + 24s. 263. 11 turkeys, 9 geese, 8 ducks.
266, (1} x,v, 2 have the permutations of the values

6, jelb=1+ JEE-3), 2 alo-1- W),

{2} z=y=2=1; Z= oo &c. 267. D,

268. 16 Clergymen of average age 45 vears ;
24 Doctors of average age 35 years:
20 Lawyers of average dge 30 years,
269, {wpay — &r%) (@otty — 2%} = (mya, - 0,)%;
OF Qyay + 20t 0,0ty — ayity® — a2, — u,3=0,

2%, z= & & u=% be 213. e~ %
N = “'—‘—‘—"'—'.—.. . —_— . 85,
,,/a.'3+b3+c- .JL Py
274, (1) [1-Z)Tlog(l 9. (9 - 1———*—!1“‘“1 ‘%
- B ( "E> ogll-aj-2 (%) a-1 { T e+l (a4+). futn) )
5 3
275, (1) 225, 3, 2;
4
y=“1s “"3': -1
HI-
.3:1, 4, Z.

(2) s=:x4, y=45, u=412, v=+x1.

o LA RaitNA haas A REEVE
.’c....ﬁ:B d,y__.qz P U= R 3

216, Wi vatrdi 277, ~pyt + 3wy — iy
279. 4, 6 birds; I, 4 bivds. 281, 2.
i -« h-a

287, u, —5a, —ba. 289, #y=— ({b _:j ‘Eb—:-:—f}}—{(g:_ b:]} .
291, 4 worked 45 dnys; I, 24 dayas; C, 10 days,
294, (M4 -a? (a¥ - P o®) {at 4 0 ef
900, Walked 4 miles, worked 4 hoars a day;

or walked 4 miles, worked 3 hours a day.

&o,

CAMBURIPGE! PRINTED DY JOHNW CLAY, M.A. AT THE URIVERSITY PREAE.
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